注意事项:
建议先了解状态机的基本定义:状态机-百度百科。
题目:
给定一个长度为 N 的数组,数组中的第 i 个数字表示一个给定股票在第 i 天的价格。
设计一个算法来计算你所能获取的最大利润,你最多可以完成 k 笔交易。
注意:你不能同时参与多笔交易(你必须在再次购买前出售掉之前的股票)。一次买入卖出合为一笔交易。
输入格式
第一行包含整数 N 和 k,表示数组的长度以及你可以完成的最大交易笔数。
第二行包含 N 个不超过 10000 的正整数,表示完整的数组。
输出格式
输出一个整数,表示最大利润。
数据范围
1≤N≤105,
1≤k≤100
样例解释
样例1:在第 1 天 (股票价格 = 2) 的时候买入,在第 2 天 (股票价格 = 4) 的时候卖出,这笔交易所能获得利润 = 4-2 = 2 。
输入:
3 2
2 4 1
输出:
2
#include <cstring>
#include <cmath>
#include <iostream>
#include <algorithm>
using namespace std;
const int N = 100010, M = 110;
int n, m;
int f[N][M][2], w[N]; //w[i]为第i天 卖出/买入 的价格
int main() {
cin >> n >> m;
for (int i = 1; i<=n; i++) cin >> w[i];
//根据实际意义出发,需要考虑所有 买入/卖出 的情况,f初始化负无穷,
//如果初始值默认为0,那么f[i-1][j-1][0]-w[i]将永远比0小,永远都不会进行买入,
//而我们需要求出所有情况,哪怕本次买入的策略对于当前这一步是亏损的, 这样才能根据这一步继续推导下一步。
//有点类似深度学习路线计算的过程hh。
memset(f, -0x3f3f, sizeof f);
//根据实际意义出发,所有前i天总交易数为0且当前不持有股票时的收益全部为0是合法情况。
for (int i = 0; i<=n; i++) f[i][0][0] = 0;
//根据状态机分析进行状态转移
for (int i = 1; i<=n; i++) {
for (int j = 1; j<=m; j++) {
f[i][j][0] = max(f[i-1][j][0], f[i-1][j][1]+w[i]);
f[i][j][1] = max(f[i-1][j][1], f[i-1][j-1][0]-w[i]);
}
}
//找到第n天不超过m笔交易的最大收益
int res = 0;
for (int i = 0; i<=m; i++) res = max(res, f[n][i][0]);
cout << res << endl;
}
思路:
还是经典的y式dp法
1.状态表示
f[i][j][0]:
对于前i
天,总交易数为j
且当前 不持有股票时的所有方案,属性为Max。
f[i][j][1]:
对于前i
天,总交易数为j
(包括当前持有的这笔股票交易)且当前 持有股票时的所有方案,属性为Max。
2.状态计算
根据状态机推导,当前 持有/未持有 股票来划分状态:
1.当前未持有股票(可以从两种状态转移过来):
- 昨天未持有股票:
f[i-1][j][0]
- 昨天持有股票但今天卖掉了:
f[i-1][j][1]+w[i]
f[i][j][0] = max(f[i-1][j][0], f[i-1][j][1]+w[i])
2.当前持有股票(可以从两种状态转移过来):
- 昨天持有股票:
f[i-1][j][1]
- 昨天未持有股票但今天买了:
f[i-1][j-1][0]-w[i]
f[i][j][1] = max(f[i-1][j][1], f[i-1][j-1][0]-w[i])
状态机画图如下(借用下彩铅大佬的图):
如果有所帮助请给个免费的赞吧~有人看才是支撑我写下去的动力!
声明:
算法思路来源为y总,详细请见https://www.acwing.com/
本文仅用作学习记录和交流