声明:本文参考链接:http://t.csdnimg.cn/CF6gw (感谢玺哥)
yolov5的代码我用的是https://github.com/ultralytics/yolov5的master分支,目前应该是版本7.0,后续作者更新后,可以切换到6.2分支来使用。
本教程使用的一些文件参考1- BPU开发_免费高速下载|百度网盘-分享无限制 (baidu.com)
提取码:0a09
一 环境配置
-
1.1 安装依赖包
如果在当前python环境下能利用
pip install onnx
轻松安装onnx,那就直接配置yolov5的环境就行了。
直接根据requirements.txt文件配置yolov5虚拟环境
pip install -r requirements.txt
1.2 运行Yolov5
下载百度云中提供的文件,按照如下流程操作:
解压yolov5-master.zip。
将zidane.jpg放到yolov5-master文件夹中。
将yolov5s.pt放到yolov5-master/models文件夹中。
进入yolov5-master文件夹,输入python .\detect.py --weights .\models\yolov5s.pt --source zidane.jpg,代码会输出检测结果保存路径,比如我的就是Results saved to runs\detect\exp,检测结果如下所示。
我这里把文件夹命名为yolov5-bpu以区别于我之前的文件
1.3 pytorch的pt模型文件转onnx
在yolov5-bpu虚拟文件夹下输入
python .\export.py --weights .\models\yolov5s.pt --include onnx --opset 11
转换后,控制台会输出一些log信息,如图所示
二 ONNX模型转换
模型转换要在docker中转换,怎么安装docker,怎么进入OE,怎么挂载硬盘,我是参考http://t.csdnimg.cn/4A5Pc
进行部署的。
新建一个文件夹,我这里沿用前人叫bpucodes
,把前面转好的yolov5s.onnx
放进这个文件夹里,百度云里也提供了相关的代码。
这里提一点,docker默认的安装地点在C盘,如果有C盘和我一样爆满的朋友可以参考这篇文章
注意如果显示: 系统找不到指定的路径