教你使用Pycharm搞定YOLOV5部署 BPU(版本: 6.2)

声明:本文参考链接:http://t.csdnimg.cn/CF6gw   (感谢玺哥)

yolov5的代码我用的是https://github.com/ultralytics/yolov5的master分支,目前应该是版本7.0,后续作者更新后,可以切换到6.2分支来使用。

本教程使用的一些文件参考1- BPU开发_免费高速下载|百度网盘-分享无限制 (baidu.com)

提取码:0a09

一 环境配置

  • 1.1 安装依赖包

    如果在当前python环境下能利用pip install onnx轻松安装onnx,那就直接配置yolov5的环境就行了。

直接根据requirements.txt文件配置yolov5虚拟环境

pip install -r requirements.txt

1.2 运行Yolov5
下载百度云中提供的文件,按照如下流程操作:

解压yolov5-master.zip。
将zidane.jpg放到yolov5-master文件夹中。
将yolov5s.pt放到yolov5-master/models文件夹中。
进入yolov5-master文件夹,输入python .\detect.py --weights .\models\yolov5s.pt --source zidane.jpg,代码会输出检测结果保存路径,比如我的就是Results saved to runs\detect\exp,检测结果如下所示。

我这里把文件夹命名为yolov5-bpu以区别于我之前的文件

1.3 pytorch的pt模型文件转onnx

在yolov5-bpu虚拟文件夹下输入

python .\export.py --weights .\models\yolov5s.pt --include onnx --opset 11

转换后,控制台会输出一些log信息,如图所示


二 ONNX模型转换

模型转换要在docker中转换,怎么安装docker,怎么进入OE,怎么挂载硬盘,我是参考http://t.csdnimg.cn/4A5Pc

进行部署的。

新建一个文件夹,我这里沿用前人叫bpucodes,把前面转好的yolov5s.onnx放进这个文件夹里,百度云里也提供了相关的代码。

这里提一点,docker默认的安装地点在C盘,如果有C盘和我一样爆满的朋友可以参考这篇文章

http://t.csdnimg.cn/RtbjC

注意如果显示:  系统找不到指定的路径

评论 3
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

ROS研究员

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值