什么是梯度下降法?
而梯度下降这个算法,也涉及到了高数上的一些知识,比如高数求导求最小化
所以,我们在学习梯度下降法之前,就需要学习有关高数求导求最小化以及其他的一些基础知识知识了
必备基础知识
高数导数最小化策略
导数最小化是一种常见的问题,解决这个问题可以帮助我们更好的找到函数的极小值
其中的数值优化算法和迭代调整参数就是梯度下降法的核心了。
通过导数最小化,我们就可以得到函数的最优解了。
学习率--learning rate
它是一个控制模型参数更新速度的超参数。在进行梯度下降优化时,学习率决定了每次参数更新的步长。
可以通过以下的公式来更好地理解学习率的作用:
学习率控制了我们朝着梯度方向下降的速度或者说步长。如果学习率太大,那么可能会“跳过”最小值,导致模型无法收敛;反之,如果学习率太小,那么优化过程会非常慢,甚至可能停留在一个不理想的局部最小值点。
而学习率又引出了一个新的概念--梯度
梯度
梯度是一个向量,它既有大小也有方向。对于函数f(x,y),在某一特定点P0处的梯度方向,是函数在该点处变化率(即方向导数)最大的方向。换句话说,梯度的方向代表了函数在该点增长最快的