python深度学习--梯度下降算法(附完整代码)

本文详细介绍了梯度下降法,涉及高数导数、最小化策略,学习率的控制,以及机器学习中的损失函数、模型参数和权值的概念。通过实例演示了梯度下降的实现步骤,包括数据准备、参数初始化、损失函数计算、梯度计算和参数更新,以及可视化结果的展示。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

什么是梯度下降法?

而梯度下降这个算法,也涉及到了高数上的一些知识,比如高数求导求最小化

所以,我们在学习梯度下降法之前,就需要学习有关高数求导求最小化以及其他的一些基础知识知识了

必备基础知识

高数导数最小化策略

导数最小化是一种常见的问题,解决这个问题可以帮助我们更好的找到函数的极小值

其中的数值优化算法和迭代调整参数就是梯度下降法的核心了。

通过导数最小化,我们就可以得到函数的最优解了。

学习率--learning rate

它是一个控制模型参数更新速度的超参数。在进行梯度下降优化时,学习率决定了每次参数更新的步长。

可以通过以下的公式来更好地理解学习率的作用:

学习率控制了我们朝着梯度方向下降的速度或者说步长。如果学习率太大,那么可能会“跳过”最小值,导致模型无法收敛;反之,如果学习率太小,那么优化过程会非常慢,甚至可能停留在一个不理想的局部最小值点。

而学习率又引出了一个新的概念--梯度

梯度

梯度是一个向量,它既有大小也有方向。对于函数f(x,y),在某一特定点P0处的梯度方向,是函数在该点处变化率(即方向导数)最大的方向。换句话说,梯度的方向代表了函数在该点增长最快的

评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值