Description
无线网络基站在理想状况下有效信号覆盖范围是个圆形。而无线基站的功耗与圆的半径的平方成正比。现给出平面上若干网络用户的位置,请你选择一个合适的位置建设无线基站 ……
就在你拿起键盘准备开始敲代码的时候,你的好朋友发明家SHTSC突然出现了。SHTSC刚刚完成了他的新发明——无线信号增幅仪。增幅仪能够在不增加无线基站功耗的前提下,使得有效信号的覆盖范围在某一特定方向上伸长若干倍。即:使用了增幅仪的无线基站覆盖范围是个椭圆,其功耗正比于半短轴长的平方。
现给出平面上若干网络用户的位置,请你选择一个合适的位置建设无线基站,并在增幅仪的帮助下使所有的用户都能接收到信号,且无线基站的功耗最小。
注意:由于SHTSC增幅仪的工作原理依赖地磁场,增幅的方向是恒定的。
Input
第一行一个整数:n。平面内的用户个数。
之后的n行每行两个整数x, y,表示一个用户的位置。
第n+2行一个整数:a。表示增幅仪的增幅方向,单位是度。表示增幅仪的方向是从x正方向逆时针转a度。
第n+3行一个整数:p。表示增幅仪的放大倍数。
Output
输出一行一个实数,为能够覆盖所有用户的最小椭圆的半短轴长,四舍五入到三位小数。
Sample Input
输入1:
2
1 0
-1 0
0
2
输入2:
3
1 1
-1 -1
0 0
45
7
Sample Output
输出1:
0.500
输出2:
0.202
Data Constraint
对于10%的数据,保证最优方案的中心在原点。
对于20%的数据,保证点是随机生成的。
对于30%的数据,n≤100。
对于50%的数据,n≤5000。
对于100%的数据,n≤50000,0≤a<180,1≤p≤100,|x|,|y|≤2×10^8。
Sulotion
因为只有固定的方向才能增幅,而结果为椭圆,于是我们可以把它缩放为增幅前的圆,
所以先旋转a度(用三角函数要转弧度),然后每个点横坐标除以p,最后最小圆覆盖。
最小圆覆盖的方法:随机增量法 http://blog.csdn.net/commonc/article/details/52291822(非常详细且证明了时间复杂度期望为O(n))
及已知三点求外接圆的方法 http://blog.csdn.net/liyuanbhu/article/details/52891868
#include<iostream>
#include<cstring>
#include<cstdio>
#include<algorithm>
#include<cmath>
using namespace std;
#define N 50050
#define DB double
#define pi 3.1415926535897932384626433832795
struct note
{
DB x,y;
};
note a[N];
DB al,th,p,co,si,ans,s;
int n;
DB sqr(DB x){return x*x;}
DB dis(note x,note y){return sqrt(sqr(x.x-y.x)+sqr(x.y-y.y));}
bool pd(int x) {return dis(a[0],a[x])<=s;}
void init()
{
scanf("%d",&n);
int x,y;
for (int i=1;i<=n;i++)
{
scanf("%d%d",&x,&y);
a[i].x=DB(x); a[i].y=DB(y);
}
scanf("%d%d",&x,&y);
al=DB(x); p=DB(y);
th=al*pi/180.00000;
si=sin(th); co=cos(th);
DB xx,yy;
for (int i=1;i<=n;i++)
{
xx=a[i].x; yy=a[i].y;
a[i].x=si*yy+co*xx;
a[i].y=co*yy-si*xx;
a[i].x/=p;
}
}
note solve(note x,note y,note z)
{
DB a,b,c,d,e,f;
a=x.x-y.x; b=x.y-y.y; c=x.x-z.x; d=x.y-z.y;
e=sqr(x.x)-sqr(y.x)+sqr(x.y)-sqr(y.y); e/=2;
f=sqr(x.x)-sqr(z.x)+sqr(x.y)-sqr(z.y); f/=2;
note re;
re.x=-(d*e-b*f)/(b*c-a*d);
re.y=-(a*f-c*e)/(b*c-a*d);
return re;
}
void find()
{
random_shuffle(a+1,a+n+1);
for (int i=1;i<=n;i++)
if (pd(i)==false)
{
a[0]=a[i]; s=0.0;
for (int j=1;j<=i-1;j++)
if (pd(j)==false)
{
a[0].x=(a[i].x+a[j].x)/2; a[0].y=(a[i].y+a[j].y)/2;
s=dis(a[i],a[j])/2;
for (int k=1;k<=j-1;k++)
if (pd(k)==false)
{
a[0]=solve(a[i],a[j],a[k]);
s=dis(a[0],a[i]);
}
}
}
}
int main()
{
freopen("amplifier.in","r",stdin);
freopen("amplifier.out","w",stdout);
init();
find();
ans=s;
printf("%.3lf\n",ans);
return 0;
}