1、用户特征
| 特征名称 | 是否建议特征 | 特征处理方式 |
| 姓名 | 否 | |
| id | 否 | |
|
性别 | 是 | onehot |
| 年龄 | 是 | num |
| 兴趣 | 是 | multi-hot |
| 所属省 | 是 | onehot |
| 所属市 | 是 | onehot |
| 所属县 | 是 | onehot |
| 所属国家或地区 | 是 | onehot |
| 用户浏览商品 | 是 | item_embedding_model |
| 用户浏览商品时间 | 是 | attention_item_embedding_model |
| 用户收藏商品 | 是 | item_embedding_model |
| 用户收藏商品时间 | 是 | attention_item_embedding_model |
| 用户点赞商品 | 是 | item_embedding_model |
| 用户点赞商品的时间 | 是 | attention_item_embedding_model |
| 用户关注 | 是 | item_embedding_model |
| 用户关注的时间 | 是 | attention_item_embedding_model |
2、item 特征
| 特征名称 | 是否建议特征 | 特征处理方式 |
| name | 是 | wordemdding |
| 总点击量 | 是 | num |
| 中期点击量 | 是 | num |
| 长期点击量 | 是 | num |
|
上架时间 | 是 | 高斯衰减函数 |
| 总曝光次数 | 是 | num |
| 中期曝光次数 | 是 | num |
| 长期曝光次数 | 是 | num |
| 标签 | 是 | onehot |
| 中期分享次数 | 是 | num |

本文探讨了在构建推荐系统时,如何处理和利用用户特征(如性别、年龄、兴趣和行为历史)以及商品特征(如点击量、曝光次数和标签)。通过onehot编码、item_embedding_model和高斯衰减函数等技术,揭示了这些特征在预测用户行为和提升推荐精度中的关键作用。同时,强调了时间因素在用户行为序列中的注意力模型应用,以捕捉用户兴趣的实时变化。
10万+

被折叠的 条评论
为什么被折叠?



