Burnside
FSYo
我不去想是否能够成功,
既然选择了远方,
便只顾风雨兼程
展开
-
P4708 画画 (Burnside)(组合数学)
传送门 考虑用 burnsideburnsideburnside 计数,枚举 n!n!n! 种置换,求出每种置换下的不动点个数 先考虑该题的一种弱化版,就是无标号无向图个数 我们要将点的置换作用到边上 将置换画成很多个环,发现一条边要么在一个置换内,要么在不同的置换中 在一个置换内和在不同置换中的不动点个数分别求 在一个置换内的不动点个数是 n2\frac{n}{2}2n,考虑如果有边 (x,x...原创 2019-12-07 00:06:34 · 493 阅读 · 0 评论 -
HDU6426 Alkane (生成函数)(牛顿迭代)(Burnside)(容斥)
传送门 第一问:求每个点度数不超过 4 的无根树数量 第二问:求每个点儿子数不超过 3 的有根树数量 首先第二个问相对简单,移步这里 传送门 其次写这道题之前应先膜拜 https://blog.csdn.net/zxyoi_dreamer/article/details/97561441 假设第一个问求出的东西的生成函数是 A(x)A(x)A(x),我们开始推导 我们发现首先可以分为两个大类分别...原创 2019-12-04 20:55:12 · 311 阅读 · 0 评论 -
LOJ 6538 烷基计数 (生成函数)(Burnside)(牛顿迭代)
传送门 题意:求儿子数不超过 3 的有根树个数 axa_xax 表示有 x 个碳的方案树 直接上生成函数,A(x)=∑aixiA(x)=\sum a_ix^iA(x)=∑aixi 我们可以先强行钦定有 3 个儿子 如果只有一个或两个的话相当于那个儿子的 sizesizesize 为 0 题目要求不同构,考虑用 BurnsideBurnsideBurnside 来计数 考虑同构的总方案数为每种置...原创 2019-12-04 15:52:11 · 656 阅读 · 0 评论