Van der Waerden 定理

https://zhuanlan.zhihu.com/p/150790806
https://www.bilibili.com/video/av86801472/

题外话:我发现 Van der Waerden 很帅 /se
在这里插入图片描述
定理内容大概为,将自然数划分成 m m m 个集合,存在任意长度的等差数列。
这里给出小学二年级 都能懂的证明(我乱想的,有错请指出)(参考了上面知乎的回答和 B 站的那个视频,不过我感觉知乎的太深奥,B 站的讲得不是很清楚)

我们设 F ( m , k ) F(m,k) F(m,k) 表示若将 [ 1 , n ] [1,n] [1,n] 分成 m m m 个集合,其中总有一个集合存在长为 k k k 的等差数列,这个 n n n 至少是多少。我们若能证明 F ( m , k ) < + ∞ F(m,k)<+\infty F(m,k)<+,那么就证到了原问题。

首先的观察的发现就是 F ( m , 2 ) F(m,2) F(m,2) 事实上就是 m + 1 m+1 m+1 (抽屉原理)
那么怎么构造长为 3 的等差数列呢?
我们先来玩一玩 F ( 2 , 3 ) F(2,3) F(2,3)
我们想到若存在两个位置 a , b ( a < b ) a,b(a<b) a,b(a<b) 颜色为 1,那么可以预定一下 2 b − a 2b-a 2ba 颜色不是 1,不然就找到了长为 3 的等差数列。此时若能再找到两个位置 p , q p,q p,q 同色,并使得 p , a p,a p,a 不同色,且 2 q − p = 2 b − a 2q-p=2b-a 2qp=2ba,那么就到手了。这些位置可以很优美的画出。
仅仅需要 y , y + d , y + 2 d , z , z + d , z + 2 d y,y+d,y+2d,z,z+d,z+2d y,y+d,y+2d,z,z+d,z+2d 这 6 个位置,
其中 p = y , a = y + 2 d , q = z + d , b = z + 2 d p=y,a=y+2d,q=z+d,b=z+2d p=y,a=y+2d,q=z+d,b=z+2d
我们将颜色用 xo 来表示,那么直观一点是这样的:
在这里插入图片描述
这样就能构造出 F ( 2 , 3 ) F(2,3) F(2,3),这看起来是一小步,其实是至关重要的考虑。

下面,我们得先对 m m m 归纳得到 F ( m , 3 ) F(m,3) F(m,3)
此时,我们仅仅需要做一些扩展,下面讨论 F ( 3 , 3 ) F(3,3) F(3,3) 的情况。
使用下面的方法:首先用 F ( 3 , 2 ) F(3,2) F(3,2) 找到 oox 的等差数列,然后把长为 F ( 3 , 2 ) F(3,2) F(3,2) 的序列(可能需要更长一些,因为需要把 x x x 的给包含进来)看成一个有 3 F ( 3 , 2 ) 3^{F(3,2)} 3F(3,2) 种可能颜色的点,后用 F ( 3 F ( 3 , 2 ) , 2 ) F(3^{F(3,2)},2) F(3F(3,2),2) 来找到一个下图括号里面的两个 x,然后找到 v,看成有 3 F ( 3 F ( 2 , 3 ) , 2 ) 3^{F(3^{F(2,3)},2)} 3F(3F(2,3),2) 种颜色的点,再使用一次。
在这里插入图片描述
我们已经找到归纳的方法了,下面考虑归纳证明 F ( m , 3 ) < ∞ F(m,3)<\infty F(m,3)<,令 N = m N=m N=m,只需要重复下面过程 m − 1 m-1 m1 次: N → N F ( N , 2 ) N\to N^{F(N,2)} NNF(N,2),最后得到的 F ( N , 2 ) F(N,2) F(N,2) 就会存在 m m m 条链相交的情况。(每做一次会多一种颜色的链出来)

接下来,我们考虑 k k k 大一些的情况。
我们先从构造 F ( 2 , 4 ) F(2,4) F(2,4) 入手,注意到只需要对 F ( 2 , 3 ) F(2,3) F(2,3) 用一次归纳:
在这里插入图片描述
此时,我们已经可以写出最终的解法了。

  1. 对于 F ( m , 2 ) F(m,2) F(m,2),我们知道 F ( m , 2 ) = m + 1 F(m,2)=m+1 F(m,2)=m+1
  2. 对于 F ( m , k ) , k ≥ 3 F(m,k),k\ge 3 F(m,k)k3,令 N = m N=m N=m,执行 m − 1 m-1 m1 N = N F ( N , k − 1 ) N=N^{F(N,k-1)} N=NF(N,k1),取 F ( m , k ) = F ( N , k − 1 ) F(m,k)=F(N,k-1) F(m,k)=F(N,k1) 就一定可以找到长为 k k k 的等差数列。

备注: N F ( N , k − 1 ) N^{F(N,k-1)} NF(N,k1) 中的 F ( N , k − 1 ) F(N,k-1) F(N,k1) 都是要做出修正的,即找到了等差数列后,要扩展其长度到等差数列的下一项,此时 F F F 仅仅是扩大了 ≤ 1 \le 1 1 倍,丝毫不影响 F ( m , k ) < ∞ F(m,k)<\infty F(m,k)<
我们不妨将步骤 2 写成:令 N = m N=m N=m,执行 m − 1 m-1 m1 N = N 2 F ( N , k − 1 ) N=N^{2F(N,k-1)} N=N2F(N,k1),取 F ( m , k ) = F ( N , k − 1 ) F(m,k)=F(N,k-1) F(m,k)=F(N,k1) 就一定可以找到长为 k k k 的等差数列。

虽然我们找到的这个上界很大,但我们知道确确实实存在这样一个上界,这也就说明了,对自然数任意划分,我们能找到任意长度的等差数列。

不仅 Van der Waerden 人长得很帅,这个定理也很美,无穷的集合,无穷的划分,带来的是无穷的美和无穷的乐趣。

  • 1
    点赞
  • 2
    收藏
    觉得还不错? 一键收藏
  • 打赏
    打赏
  • 2
    评论
原书序: 代数学是数学的一个重要的基础的分支,历史悠久.我国古代在代数学方面有光辉的成就.一百多年来,尤其是20世纪以来,随着数学的发展以及应用的需要,代数学的研究对象以及研究方法发生了巨大的变革.一系列的新的代数领域被建立起来,大大地扩充了代数学的研究范围,形成了所谓近世代数学.它与以代数方程的根的计算与分布为研究中心的古典代数学有所不同,它是以研究数字、文字和更一般元素的代数运算的规律及各种代数结构 群、环、代数、域、格等的性质为其中心问题的.由于代数运算贯穿在任何数学理论和应用问题里,也由于代数结构及其中元素的一般性,近世代数学的研究在数学中是具有基本性的.它的方法和结果渗透到那些与它相接近的各个不同的数学分支中,成为一些有着新面貌和新内容的数学领域一一代数数论、代数几何、拓扑代数、Lie群和Lie代数、代数拓扑、泛函分析等.这样,近世代数学就对于全部现代数学的发展有着显著的影响,并且对于一些其他的科学领域(如理论物理学、计算机原理等)也有较直接的应用。 历史上,近世代数学可以说是从19世纪之初发生的,Galois应用群的概念对于高次代数方程是否可以用根式来解的问题进行了研究并给出彻底的解答,他可以说是近世代数学的创始者.从那起,近世代数学由萌芽而成长而发达.大概由19世纪的末叶开始,群以及紧相联系着的不变量的概念,在几何上、在分析上以及在理论物理上,都产生了重大的影响.深刻研究群以及其他相关的概念,如环、理想、线性空间、代数等,应用于代数学各个部分,这就形成近世代数学更进一步的演进,完成了以前独立发展着的三个主要方面——代数数论、线性代数及代数、群论的综合.对于这一步统一的工作,近代德国代数学派起了主要的作用.由Dedekind及Hilbert于19世纪末叶的工作开始,steinitz于1911年发表的论文对于代数学抽象化工作贡献很大,其后自1920年左右起以Noether?和Artin及她和他的学生们为中心,近世代数学的发展极为灿烂。
评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

FSYo

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值