小时候一直听父亲装逼
e
i
π
+
1
=
0
e^{i\pi}+1=0
eiπ+1=0
心想总有一天我会弄懂,现在可算可以争一口气了
其实这个公式的原型是
e
i
θ
=
c
o
s
θ
+
i
∗
s
i
n
θ
e^{i\theta}=cos\theta+i*sin\theta
eiθ=cosθ+i∗sinθ
前置知识:泰勒展开(用一个多项式去拟合一个复杂函数)
f
(
x
)
=
∑
i
=
0
∞
f
(
i
)
(
x
0
)
(
x
−
x
0
)
i
i
!
f(x)=\sum_{i=0}^{\infty}\frac{f^{(i)}(x_0)(x-x_0)^i}{i!}
f(x)=i=0∑∞i!f(i)(x0)(x−x0)i
证明可以百度,博主是跟这篇学的 here
将
e
x
e^x
ex 在 0 点展开得到
e
x
=
∑
i
=
0
∞
x
i
i
!
e^x=\sum_{i=0}^{\infty} \frac{x^i}{i!}
ex=i=0∑∞i!xi
将
c
o
s
(
x
)
cos(x)
cos(x) 在 0 点展开得到
c
o
s
(
x
)
=
1
−
x
2
2
!
+
x
4
4
!
−
x
6
6
!
+
.
.
.
cos(x)=1-\frac{x^2}{2!}+\frac{x^4}{4!}-\frac{x^6}{6!}+...
cos(x)=1−2!x2+4!x4−6!x6+...
将
s
i
n
(
x
)
sin(x)
sin(x) 在 0 点展开得到
s
i
n
(
x
)
=
x
−
x
3
3
!
+
x
5
5
!
−
x
7
7
!
+
.
.
.
sin(x)=x-\frac{x^3}{3!}+\frac{x^5}{5!}-\frac{x^7}{7!}+...
sin(x)=x−3!x3+5!x5−7!x7+...
将
x
=
i
θ
x=i\theta
x=iθ 代入得
1
+
(
i
θ
)
1
!
+
(
i
θ
)
2
2
!
+
(
i
θ
)
3
3
!
+
.
.
.
=
(
1
−
θ
2
2
!
+
θ
4
4
!
−
.
.
.
)
+
i
(
θ
−
θ
3
3
!
+
θ
5
5
!
−
.
.
.
)
1+\frac{(i\theta)}{1!}+\frac{(i\theta)^2}{2!}+\frac{(i\theta)^3}{3!}+...=(1-\frac{\theta^2}{2!}+\frac{\theta^4}{4!}-...)+i(\theta-\frac{\theta^3}{3!}+\frac{\theta^5}{5!}-...)
1+1!(iθ)+2!(iθ)2+3!(iθ)3+...=(1−2!θ2+4!θ4−...)+i(θ−3!θ3+5!θ5−...)
所以有
e
i
θ
=
c
o
s
θ
+
i
∗
s
i
n
θ
e^{i\theta}=cos\theta+i*sin\theta
eiθ=cosθ+i∗sinθ