【证明】欧拉公式(泰勒展开)

小时候一直听父亲装逼
e i π + 1 = 0 e^{i\pi}+1=0 eiπ+1=0
心想总有一天我会弄懂,现在可算可以争一口气了
其实这个公式的原型是 e i θ = c o s θ + i ∗ s i n θ e^{i\theta}=cos\theta+i*sin\theta eiθ=cosθ+isinθ
前置知识:泰勒展开(用一个多项式去拟合一个复杂函数)

f ( x ) = ∑ i = 0 ∞ f ( i ) ( x 0 ) ( x − x 0 ) i i ! f(x)=\sum_{i=0}^{\infty}\frac{f^{(i)}(x_0)(x-x_0)^i}{i!} f(x)=i=0i!f(i)(x0)(xx0)i
证明可以百度,博主是跟这篇学的 here

e x e^x ex 在 0 点展开得到
e x = ∑ i = 0 ∞ x i i ! e^x=\sum_{i=0}^{\infty} \frac{x^i}{i!} ex=i=0i!xi
c o s ( x ) cos(x) cos(x) 在 0 点展开得到
c o s ( x ) = 1 − x 2 2 ! + x 4 4 ! − x 6 6 ! + . . . cos(x)=1-\frac{x^2}{2!}+\frac{x^4}{4!}-\frac{x^6}{6!}+... cos(x)=12!x2+4!x46!x6+...
s i n ( x ) sin(x) sin(x) 在 0 点展开得到
s i n ( x ) = x − x 3 3 ! + x 5 5 ! − x 7 7 ! + . . . sin(x)=x-\frac{x^3}{3!}+\frac{x^5}{5!}-\frac{x^7}{7!}+... sin(x)=x3!x3+5!x57!x7+...
x = i θ x=i\theta x=iθ 代入得
1 + ( i θ ) 1 ! + ( i θ ) 2 2 ! + ( i θ ) 3 3 ! + . . . = ( 1 − θ 2 2 ! + θ 4 4 ! − . . . ) + i ( θ − θ 3 3 ! + θ 5 5 ! − . . . ) 1+\frac{(i\theta)}{1!}+\frac{(i\theta)^2}{2!}+\frac{(i\theta)^3}{3!}+...=(1-\frac{\theta^2}{2!}+\frac{\theta^4}{4!}-...)+i(\theta-\frac{\theta^3}{3!}+\frac{\theta^5}{5!}-...) 1+1!(iθ)+2!(iθ)2+3!(iθ)3+...=(12!θ2+4!θ4...)+i(θ3!θ3+5!θ5...)
所以有
e i θ = c o s θ + i ∗ s i n θ e^{i\theta}=cos\theta+i*sin\theta eiθ=cosθ+isinθ

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

FSYo

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值