💥💥💞💞欢迎来到本博客❤️❤️💥💥
🏆博主优势:🌞🌞🌞博客内容尽量做到思维缜密,逻辑清晰,为了方便读者。
⛳️座右铭:行百里者,半于九十。
📋📋📋本文目录如下:🎁🎁🎁
目录
💥1 概述
引言:
雷达目标跟踪是现代军事和民用航空、航海以及交通监控系统中的关键任务。其核心在于准确估计运动目标的状态,如位置、速度和加速度,基于雷达接收到的连续测量数据。然而,实际测量通常受到噪声、非线性效应以及多路径传播的影响,这使得精确跟踪变得复杂。为此,设计有效的滤波算法以处理非线性动态模型和测量模型成为研究的重点。
转换后的伪测量:
在非线性系统中,直接应用线性滤波器(如卡尔曼滤波器)会导致估计误差累积,因为测量模型不能被线性化。一种解决方案是利用转换后的伪测量技术,该技术首先将非线性测量转换为与状态直接相关的线性或准线性形式,然后再应用线性滤波方法。这通常涉及到测量模型的局部线性化或通过其他数学变换实现。
线性序贯滤波器:
序贯滤波器是一种递归算法,用于实时更新目标状态估计,当新测量数据到达时。在雷达目标跟踪中,线性序贯滤波器如卡尔曼滤波器及其变体(如扩展卡尔曼滤波器EKF和无迹卡尔曼滤波器UKF),是处理动态系统状态估计的常用方法。序贯滤波器能够结合预测和校正步骤,以最小均方误差(MMSE)准则优化状态估计。
应用于雷达目标跟踪:
将转换后的伪测量与线性序贯滤波器相结合,可以有效提高雷达目标跟踪的精度和稳定性。这种方法通过预处理测量数据,将其转换为适合线性滤波的形式,从而克服了非线性带来的问题。在每次测量更新时,滤波器能够利用转换后的测量信息,更准确地调整状态估计,减少由于非线性引起的偏差。
结论:
在雷达目标跟踪中,采用基于转换后伪测量的线性序贯滤波器是一种实用且高效的策略,尤其是在处理非线性测量的情况下。这种方法不仅提高了估计精度,还简化了滤波算法的实现,使其更适合实时应用。未来的研究方向可能包括进一步优化转换技术和开发更高级的序贯滤波器,以应对更加复杂和动态的跟踪环境。
📚2 运行结果
主函数部分代码:
clear all;
close all;
clc;
%蒙特卡洛次数
M=200;
%雷达位置
X_radar=[0;0;0];
T=1;%采样周期
total_time=200;%采样时间
%SQpseudo_final
RMSE_SQpesudo_final=zeros(M,total_time/T);
%ASLF
RMSE_ASLF=zeros(M,total_time/T);
%Adaptive_lamd
RMSE_adaptive_lamd=zeros(M,total_time/T);
Scene=2;
switch Scene
case 1
% 场景1
sigma_r=100;
sigma_theta=deg2rad(0.2);
sigma_fi=deg2rad(0.2);
sigma_rdot=0.1;
rho=-0.9;
case 2
% 场景2
sigma_r=200;
sigma_theta=deg2rad(1);
sigma_fi=deg2rad(1);
sigma_rdot=0.1;
rho=-0.9;
case 3
% 场景4
sigma_r=200;
sigma_theta=deg2rad(2);
sigma_fi=deg2rad(2);
sigma_rdot=1;
rho=-0.9;
case 4
% 场景3
sigma_r=200;
sigma_theta=deg2rad(2);
sigma_fi=deg2rad(2);
sigma_rdot=1;
rho=-0.9;
case 5
% 场景5
sigma_r=500;
sigma_theta=deg2rad(2);
sigma_fi=deg2rad(2);
sigma_rdot=1;
rho=-0.9;
case 6
% 场景6
sigma_r=500;
sigma_theta=deg2rad(2);
sigma_fi=deg2rad(2);
sigma_rdot=1;
rho=0;
end
R = [sigma_r^2 0 0 rho*sigma_r*sigma_rdot;
0 sigma_theta^2 0 0;
0 0 sigma_fi^2 0;%----------------------------------------总体量测误差协方差
rho*sigma_r*sigma_rdot 0 0 sigma_rdot^2];
%模型1 CV的状态转移矩阵,过噪输入矩阵及过噪矩阵
F1=[1 T 0;
0 1 0;
0 0 0];
Fcv=[F1 zeros(3,6);
zeros(3,3) F1 zeros(3,3);
zeros(3,6) F1];
Gcv=[T^2/2 0 0;T 0 0;0 0 0;0 T^2/2 0;0 T 0;0 0 0;0 0 T^2/2;0 0 T;0 0 0];
Qcv=0.01*[1 0 0;0 1 0;0 0 1];
%模型2 CA的状态转移矩阵,过噪输入矩阵及过噪矩阵
F2=[1 T T^2/2;
0 1 T;
0 0 1];
Fca=[F2 zeros(3,6);
zeros(3,3) F2 zeros(3,3);
zeros(3,6) F2];
Gca=[T^2/2 0 0;T 0 0;1 0 0;0 T^2/2 0;0 T 0;0 1 0;0 0 T^2/2;0 0 T;0 0 1];
Qca=9*[1 0 0;0 1 0;0 0 1];
🎉3 参考文献
文章中一些内容引自网络,会注明出处或引用为参考文献,难免有未尽之处,如有不妥,请随时联系删除。
[1]耿双双,谢广明,管浩丞,等.基于改进DPC的毫米波雷达多目标跟踪研究[J/OL].广西科技大学学报:1-15[2024-07-18].http://kns.cnki.net/kcms/detail/45.1395.T.20240411.0848.003.html.
[2]杨遵立,张衡,吕伟,等.改进的自适应扩展卡尔曼滤波雷达目标跟踪算法[J].火力与指挥控制,2024,49(03):19-24.