💥💥💞💞欢迎来到本博客❤️❤️💥💥
🏆博主优势:🌞🌞🌞博客内容尽量做到思维缜密,逻辑清晰,为了方便读者。
⛳️座右铭:行百里者,半于九十。
📋📋📋本文目录如下:🎁🎁🎁
目录
⛳️赠与读者
👨💻做科研,涉及到一个深在的思想系统,需要科研者逻辑缜密,踏实认真,但是不能只是努力,很多时候借力比努力更重要,然后还要有仰望星空的创新点和启发点。当哲学课上老师问你什么是科学,什么是电的时候,不要觉得这些问题搞笑。哲学是科学之母,哲学就是追究终极问题,寻找那些不言自明只有小孩子会问的但是你却回答不出来的问题。建议读者按目录次序逐一浏览,免得骤然跌入幽暗的迷宫找不到来时的路,它不足为你揭示全部问题的答案,但若能让人胸中升起一朵朵疑云,也未尝不会酿成晚霞斑斓的别一番景致,万一它居然给你带来了一场精神世界的苦雨,那就借机洗刷一下原来存放在那儿的“躺平”上的尘埃吧。
或许,雨过云收,神驰的天地更清朗.......🔎🔎🔎
💥1 概述
参考文献:
采用的是matlab自带的kkt函数,并结合求解器直接求解.
主动配电网(Active Distribution Network, ADN)的鲁棒故障恢复策略是智能电网研究中的一个重要领域,它旨在通过先进的控制和优化技术,在面对各种不确定性因素(如负荷变化、分布式能源的间歇性等)时,确保电力系统的稳定运行并快速从故障中恢复。将两阶段鲁棒模型与确定性模型相结合,应用于IEEE 69节点测试系统进行研究,是一种深入探讨该问题的有效方法。
两阶段鲁棒模型
-
第一阶段:不确定性建模与鲁棒优化
在这一阶段,主要目标是识别和量化系统中的不确定因素,并在此基础上构建一个能够抵御这些不确定性的鲁棒优化模型。这通常涉及定义不确定参数的置信集(如负荷波动范围、DER输出变化区间等),然后采用鲁棒优化理论(如线性决策规则、 Worst-of-All-Cases等)来寻找最优或近似最优策略,确保即使在最不利的不确定性实现下系统也能正常运行或有效恢复。 -
第二阶段:确定性策略实施与调整
一旦得到鲁棒策略,进入第二阶段,实际执行确定性操作计划。这包括具体的操作指令,如开关重合闸、负荷转移、分布式能源资源(DER)出力调节等,以实现系统恢复。在实施过程中,可能会根据实时监测数据对原计划进行微调,以更好地适应实际情况,这种反馈机制增加了策略的灵活性和有效性。
IEEE 69节点测试系统
IEEE 69节点系统是一个经典的中压配电网测试模型,常用于评估配电自动化技术、保护策略及优化调度算法的效果。在这个案例中,使用该系统作为研究平台,可以分析不同故障情景下的配电网行为,探索如何利用鲁棒模型指导的策略来迅速定位故障、隔离受影响区域,并恢复供电服务,同时保持系统的经济性和可靠性。
研究重点
- 鲁棒性分析:识别关键不确定因素,建立合理的不确定性模型,评估其对系统恢复策略的影响。
- 优化策略设计:结合两阶段方法,开发能够在不确定性环境下保证系统稳定性和恢复能力的最优或次优控制策略。
- 实时适应性:研究如何在实施阶段根据实际情况动态调整策略,增强系统应对突发情况的能力。
- 性能评估:通过模拟多种故障情景,评估提出的鲁棒故障恢复策略在恢复速度、系统稳定性、能源效率等方面的性能。
结论
将两阶段鲁棒模型与确定性模型相结合的方法应用于主动配电网的鲁棒故障恢复研究,不仅能够提升电网在面对不确定条件下的自愈能力,还能优化资源配置,确保电力供应的连续性和高质量。针对IEEE 69节点系统的应用研究,为实际配电网的智能化管理和故障处理提供了理论依据和技术参考。
📚2 运行结果
🎉3 参考文献
文章中一些内容引自网络,会注明出处或引用为参考文献,难免有未尽之处,如有不妥,请随时联系删除。
🌈4 Matlab代码、文档
资料获取,更多粉丝福利,MATLAB|Simulink|Python资源获取