【负荷预测】基于CNN-BiGRU-Attention的负荷预测研究(Python代码实现)

      💥💥💞💞欢迎来到本博客❤️❤️💥💥

🏆博主优势:🌞🌞🌞博客内容尽量做到思维缜密,逻辑清晰,为了方便读者。

⛳️座右铭:行百里者,半于九十。

📋📋📋本文目录如下:🎁🎁🎁

目录

 ⛳️赠与读者

💥1 概述

一、引言

二、模型原理

1. 卷积神经网络(CNN)

2. 双向门控循环单元(BiGRU)

3. 注意力机制(Attention)

三、模型结构

四、实验与结果

1. 数据集

2. 实验设置

3. 实验结果

五、结论与展望

📚2 运行结果

🎉3 参考文献

🌈4 Python代码、数据


 ⛳️赠与读者

👨‍💻做科研,涉及到一个深在的思想系统,需要科研者逻辑缜密,踏实认真,但是不能只是努力,很多时候借力比努力更重要,然后还要有仰望星空的创新点和启发点。当哲学课上老师问你什么是科学,什么是电的时候,不要觉得这些问题搞笑。哲学是科学之母,哲学就是追究终极问题,寻找那些不言自明只有小孩子会问的但是你却回答不出来的问题。建议读者按目录次序逐一浏览,免得骤然跌入幽暗的迷宫找不到来时的路,它不足为你揭示全部问题的答案,但若能让人胸中升起一朵朵疑云,也未尝不会酿成晚霞斑斓的别一番景致,万一它居然给你带来了一场精神世界的苦雨,那就借机洗刷一下原来存放在那儿的“躺平”上的尘埃吧。

     或许,雨过云收,神驰的天地更清朗.......🔎🔎🔎

💥1 概述

基于CNN-BiGRU-Attention的负荷预测研究文档


一、引言

电力负荷预测是电力系统运行和调度中的重要环节,对于保障电网的安全稳定运行、优化资源配置具有重要意义。随着智能电网的快速发展,电力负荷数据呈现出高维、非线性、动态变化的特点,传统的预测方法已难以满足实际需求。因此,基于深度学习技术的负荷预测方法成为研究热点。本文提出了一种结合卷积神经网络(CNN)、双向门控循环单元(BiGRU)和注意力机制(Attention)的负荷预测模型,旨在提高负荷预测的准确性和鲁棒性。

二、模型原理

1. 卷积神经网络(CNN)

CNN在图像处理领域表现出色,其强大的特征提取能力同样适用于时间序列数据的空间特征提取。在负荷预测中,CNN通过卷积层和池化层等结构,能够有效地提取负荷数据中的局部特征和全局特征,为后续的序列建模提供丰富的特征表示。

2. 双向门控循环单元(BiGRU)

BiGRU是一种特殊的循环神经网络(RNN),具有双向性和门控机制。它能够同时考虑时间序列数据的前向和后向信息,从而更全面地捕捉数据中的长期依赖关系。在负荷预测中,BiGRU能够利用历史负荷数据中的时间依赖性,对负荷的变化趋势进行建模和预测。

3. 注意力机制(Attention)

注意力机制使模型能够动态地学习到输入序列中不同部分的重要性,从而在预测时更加关注对预测有贡献的信息。在负荷预测中,不同时间步的负荷数据对预测结果的贡献度是不同的。通过引入注意力机制,模型能够自动地识别出关键时间步,并为其分配更高的权重,从而提高预测的准确性和鲁棒性。

三、模型结构

基于CNN-BiGRU-Attention的负荷预测模型主要由以下几个部分组成:

  1. 数据预处理层:对原始负荷数据进行清洗、归一化等预处理操作,以消除噪声和量纲不一致的问题。
  2. CNN特征提取层:使用卷积神经网络对预处理后的负荷数据进行特征提取,得到具有空间特征的高级表示。
  3. BiGRU序列建模层:将CNN提取的特征输入到双向门控循环单元中进行序列建模,捕捉负荷数据中的长期依赖关系。
  4. Attention加权层:引入注意力机制对BiGRU的输出进行加权处理,突出关键时间步的重要性。
  5. 预测输出层:根据加权后的特征表示进行负荷预测,输出预测结果。

四、实验与结果

1. 数据集

选择某地区的历史负荷数据作为实验数据集,数据包括历史负荷值、气温、湿度等相关因素。

2. 实验设置
  • 将数据集划分为训练集、验证集和测试集。
  • 使用交叉验证等方法优化模型参数。
  • 评估指标包括均方根误差(RMSE)、平均绝对误差(MAE)等。
3. 实验结果

实验结果表明,基于CNN-BiGRU-Attention的负荷预测模型在预测精度上优于传统的负荷预测方法。该模型能够更准确地捕捉负荷数据中的动态变化规律和关键信息,从而提高了预测的准确性和鲁棒性。

五、结论与展望

本文提出了一种基于CNN-BiGRU-Attention的负荷预测模型,通过结合卷积神经网络、双向门控循环单元和注意力机制的优势,实现了对电力负荷的精准预测。实验结果表明,该模型在预测精度和鲁棒性方面均表现出色,为电力系统的运行和调度提供了有力的支持。未来研究可以进一步探索更多深度学习技术在负荷预测中的应用,如引入更复杂的注意力机制、结合其他类型的数据源等,以进一步提高预测性能。

📚2 运行结果

部分代码:

# 初始化存储各个评估指标的字典。
table = PrettyTable(['测试集指标','MSE', 'RMSE', 'MAE', 'MAPE','R2'])
for i in range(n_out):
    # 遍历每一个预测步长。每一列代表一步预测,现在是在求每步预测的指标
    actual = [float(row[i]) for row in Ytest]  #一列列提取
    # 从测试集中提取实际值。
    predicted = [float(row[i]) for row in predicted_data]
    # 从预测结果中提取预测值。
    mse = mean_squared_error(actual, predicted)
    # 计算均方误差(MSE)。
    mse_dic.append(mse)
    rmse = sqrt(mean_squared_error(actual, predicted))
    # 计算均方根误差(RMSE)。
    rmse_dic.append(rmse)
    mae = mean_absolute_error(actual, predicted)
    # 计算平均绝对误差(MAE)。
    mae_dic.append(mae)
    MApe = mape(actual, predicted)
    # 计算平均绝对百分比误差(MAPE)。
    mape_dic.append(MApe)
    r2 = r2_score(actual, predicted)
    # 计算R平方值(R2)。
    r2_dic.append(r2)
    if n_out == 1:
        strr = '预测结果指标:'
    else:
        strr = '第'+ str(i + 1)+'步预测结果指标:'
    table.add_row([strr, mse, rmse, mae, str(MApe)+'%', str(r2*100)+'%'])

return mse_dic,rmse_dic, mae_dic, mape_dic, r2_dic, table
# 返回包含所有评估指标的字典。

🎉3 参考文献

文章中一些内容引自网络,会注明出处或引用为参考文献,难免有未尽之处,如有不妥,请随时联系删除。

[1]张惟东.基于CNN-LSTM-Attention的短期电力负荷预测研究[D].兰州理工大学,2022.

[2]姚芳,汤俊豪,陈盛华,等.基于ISSA-CNN-GRU模型的电动汽车充电负荷预测方法[J].电力系统保护与控制, 2023, 51(16):158-167.

[3]姚芳,汤俊豪,陈盛华,等.基于ISSA-CNN-GRU模型的电动汽车充电负荷预测方法[J].电力系统保护与控制, 2023, 51(16):158-167.

[4]姚程文、杨苹、刘泽健.基于CNN-GRU混合神经网络的负荷预测方法[J].电网技术, 2020, 44(9):8.DOI:10.13335/j.1000-3673.pst.2019.2058.

[5]谢志坚.基于CNN-BAS-GRU模型的短期电力负荷预测研究[J].现代计算机, 2023, 29(21):15-20.

[6]杨超.基于ISSA优化CNN-BiGRU-Self Attention的短期电力负荷预测研究[D].陕西理工大学,2024. 

🌈4 Python代码、数据

资料获取,更多粉丝福利,MATLAB|Simulink|Python资源获取

                                                           在这里插入图片描述

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值