基于CNN-BiGRU-Attention风电功率预测研究(Matlab代码实现)

  💥💥💞💞欢迎来到本博客❤️❤️💥💥

🏆博主优势:🌞🌞🌞博客内容尽量做到思维缜密,逻辑清晰,为了方便读者。

⛳️座右铭:行百里者,半于九十。

📋📋📋本文目录如下:🎁🎁🎁

目录

 ⛳️赠与读者

💥1 概述

一、研究背景与意义

二、模型概述

1. CNN(卷积神经网络)

2. BiGRU(双向门控循环单元)

3. Attention(注意力机制)

三、模型构建与训练

四、研究优势与挑战

优势

挑战

五、未来展望

📚2 运行结果

🎉3 参考文献

🌈4 Matlab代码、数据


 ⛳️赠与读者

👨‍💻做科研,涉及到一个深在的思想系统,需要科研者逻辑缜密,踏实认真,但是不能只是努力,很多时候借力比努力更重要,然后还要有仰望星空的创新点和启发点。当哲学课上老师问你什么是科学,什么是电的时候,不要觉得这些问题搞笑。哲学是科学之母,哲学就是追究终极问题,寻找那些不言自明只有小孩子会问的但是你却回答不出来的问题。建议读者按目录次序逐一浏览,免得骤然跌入幽暗的迷宫找不到来时的路,它不足为你揭示全部问题的答案,但若能让人胸中升起一朵朵疑云,也未尝不会酿成晚霞斑斓的别一番景致,万一它居然给你带来了一场精神世界的苦雨,那就借机洗刷一下原来存放在那儿的“躺平”上的尘埃吧。

     或许,雨过云收,神驰的天地更清朗.......🔎🔎🔎

💥1 概述

基于CNN-BiGRU-Attention的风电功率预测研究是一个结合了多种先进技术的复杂课题,旨在提高风电功率预测的准确性和效率。以下是对该研究的详细分析:

一、研究背景与意义

风能作为一种清洁、可再生的能源,在全球能源结构中占据越来越重要的地位。然而,由于风能的间歇性和不稳定性,风电功率预测成为了一个具有挑战性的任务。准确的风电功率预测对于电力系统的调度、优化风电场的运行以及促进风电的并网消纳具有重要意义。

二、模型概述

1. CNN(卷积神经网络)

CNN在图像处理领域表现出色,其卷积层和池化层能够自动提取图像中的局部特征,并通过层次化的结构逐渐抽象出更高级别的特征。在风电功率预测中,CNN可以用来提取与风电功率相关的气象数据(如风速、风向、温度等)的空间特征。

2. BiGRU(双向门控循环单元)

BiGRU是RNN(循环神经网络)的一种变体,通过引入门控机制和双向结构,能够捕捉时序数据中的长期依赖关系,并同时考虑过去和未来的信息。在风电功率预测中,BiGRU能够捕捉时间序列数据中的时序依赖关系,提高预测精度。

3. Attention(注意力机制)

Attention机制能够动态地调整不同输入特征的权重,使模型更加关注对预测结果影响较大的输入特征。在风电功率预测中,引入Attention机制可以提高模型对关键信息的关注度,进一步提高预测精度。

三、模型构建与训练

基于CNN-BiGRU-Attention的风电功率预测模型构建主要包括以下几个步骤:

  1. 数据收集与预处理:收集风电场的气象数据(如风速、风向、温度、湿度等)和历史功率数据,并进行数据清洗、去噪、插值等预处理操作,以消除异常值和缺失值对预测结果的影响。
  2. 特征提取:使用CNN对预处理后的气象数据进行特征提取,获取与风电功率相关的空间特征。
  3. 时间序列建模:将CNN提取的特征输入到BiGRU中,利用BiGRU捕捉这些特征之间的时序依赖关系。
  4. 预测输出:BiGRU的输出将用于预测未来的风电功率。
  5. 模型训练:使用训练集数据对CNN-BiGRU-Attention模型进行训练,通过反向传播算法更新网络参数。
  6. 性能评估:使用测试集数据对训练好的模型进行评估,计算预测误差(如均方误差MSE、平均绝对误差MAE等),以评估模型的预测性能。

四、研究优势与挑战

优势
  1. 高精度预测:CNN-BiGRU-Attention模型能够同时捕捉风电功率数据中的空间和时间特征,实现高精度的预测。
  2. 适应性强:该模型能够处理非线性、高维的时序数据,适用于复杂的风电预测场景。
  3. 稳定性好:通过引入BiGRU的双向结构和门控机制,模型在处理时序数据时具有更好的稳定性。
挑战
  1. 计算复杂度:CNN-BiGRU-Attention模型的计算复杂度较高,需要较长的训练时间和较高的计算资源。
  2. 数据依赖性:模型的预测性能高度依赖于输入数据的质量和数量。如果数据存在缺失或异常值,可能会对预测结果产生较大影响。
  3. 参数调优:模型的性能受参数影响较大,需要进行细致的参数调优工作以获得最佳预测效果。

五、未来展望

随着深度学习技术的不断发展,基于CNN-BiGRU-Attention的风电功率预测研究将不断深入和完善。未来研究可以进一步探索以下方向:

  1. 多源数据融合:将更多的数据源(如气象数据、地理数据、电网运行数据等)进行融合,以提高预测模型的准确性和鲁棒性。
  2. 模型优化:通过引入更先进的算法(如粒子群算法PSO、灰狼优化算法GWO等)对CNN-BiGRU-Attention模型进行优化,以进一步提高预测精度和训练效率。
  3. 实时预测:开发高效的实时预测算法和平台,以实现风电功率的实时预测和动态调度。

综上所述,基于CNN-BiGRU-Attention的风电功率预测研究具有重要的学术价值和实际应用意义。通过不断优化和完善预测模型,可以为电力系统的稳定运行和优化调度提供更加可靠的技术支持。

📚2 运行结果

部分代码:

%% 网络搭建CNN-BiGRU-ATTENTION
lgraph = layerGraph();

% 添加层分支
% 将网络分支添加到层次图中。每个分支均为一个线性层组。
tempLayers = sequenceInputLayer([numFeatures,1,1],"Name","sequence");
lgraph = addLayers(lgraph,tempLayers);

tempLayers = [
    convolution2dLayer([3,1],16,"Name","conv","Padding","same")
    batchNormalizationLayer("Name","batchnorm")
    reluLayer("Name","relu")
    maxPooling2dLayer([3 3],"Name","maxpool","Padding","same")
    flattenLayer("Name","flatten_1")
    fullyConnectedLayer(25,"Name","fc_1")];
lgraph = addLayers(lgraph,tempLayers);

tempLayers = flattenLayer("Name","flatten");
lgraph = addLayers(lgraph,tempLayers);

tempLayers = gruLayer(35,"Name","gru1");
lgraph = addLayers(lgraph,tempLayers);

tempLayers = [
    FlipLayer("flip3")
    gruLayer(35,"Name","gru2")];
lgraph = addLayers(lgraph,tempLayers);

tempLayers = [
    concatenationLayer(1,3,"Name","concat")
    selfAttentionLayer(1,50,"Name","selfattention")   %Attention机制
    fullyConnectedLayer(outdim,"Name","fc")
    regressionLayer("Name","regressionoutput")];
lgraph = addLayers(lgraph,tempLayers);

% 清理辅助变量
clear tempLayers;

% 连接层分支
% 连接网络的所有分支以创建网络图。
lgraph = connectLayers(lgraph,"sequence","conv");
lgraph = connectLayers(lgraph,"sequence","flatten");
lgraph = connectLayers(lgraph,"flatten","gru1");
lgraph = connectLayers(lgraph,"flatten","flip3");
lgraph = connectLayers(lgraph,"gru1","concat/in1");
lgraph = connectLayers(lgraph,"gru2","concat/in2");
lgraph = connectLayers(lgraph,"fc_1","concat/in3");
 

🎉3 参考文献

文章中一些内容引自网络,会注明出处或引用为参考文献,难免有未尽之处,如有不妥,请随时联系删除。

[1]陈新岗,赵龙,马志鹏,等.基于ISSA-CNN-BiGRU-Attention的锂电池健康状态评估[J].电子测量技术, 2024(8).

[2]邓昕,刘朝晖,欧阳燕,等.基于CNN CBAM-BiGRU Attention的加密恶意流量识别[J].计算机工程, 2023, 49(11):178-186.DOI:10.19678/j.issn.1000-3428.0066558.

[3]曾囿钧,肖先勇,徐方维,等.基于CNN-BiGRU-NN模型的短期负荷预测方法[J].中国电力, 2021, 54(9):7.DOI:10.11930/j.issn.1004-9649.202003035.

🌈4 Matlab代码、数据

资料获取,更多粉丝福利,MATLAB|Simulink|Python资源获取

                                                           在这里插入图片描述

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值