【负荷预测】基于Transform-KAN的负荷预测研究(Python代码实现)

                          💥💥💞💞欢迎来到本博客❤️❤️💥💥

🏆博主优势:🌞🌞🌞博客内容尽量做到思维缜密,逻辑清晰,为了方便读者。

⛳️座右铭:行百里者,半于九十。

📋📋📋本文目录如下:🎁🎁🎁

目录

 ⛳️赠与读者

💥1 概述

📚2 运行结果

🎉3 参考文献

🌈4 Python代码、数据


 ⛳️赠与读者

👨‍💻做科研,涉及到一个深在的思想系统,需要科研者逻辑缜密,踏实认真,但是不能只是努力,很多时候借力比努力更重要,然后还要有仰望星空的创新点和启发点。当哲学课上老师问你什么是科学,什么是电的时候,不要觉得这些问题搞笑。哲学是科学之母,哲学就是追究终极问题,寻找那些不言自明只有小孩子会问的但是你却回答不出来的问题。建议读者按目录次序逐一浏览,免得骤然跌入幽暗的迷宫找不到来时的路,它不足为你揭示全部问题的答案,但若能让人胸中升起一朵朵疑云,也未尝不会酿成晚霞斑斓的别一番景致,万一它居然给你带来了一场精神世界的苦雨,那就借机洗刷一下原来存放在那儿的“躺平”上的尘埃吧。

     或许,雨过云收,神驰的天地更清朗.......🔎🔎🔎

💥1 概述

基于Transform-KAN的负荷预测研究文档

一、引言

负荷预测是电力系统规划和运行中的关键环节,对于确保电力供需平衡、优化资源配置具有重要意义。随着大数据和人工智能技术的不断发展,负荷预测方法也在不断创新。本文旨在探讨基于Transformer与Kolmogorov-Arnold网络(KAN)结合的负荷预测方法,即Transform-KAN模型,以期提高负荷预测的精度和效率。

二、背景与动机

  1. Transformer模型:Transformer是一种基于自注意力机制的神经网络模型,在自然语言处理领域取得了巨大成功。其核心优势在于能够并行处理数据,同时有效捕捉序列数据中的长期依赖关系。近年来,Transformer模型在时间序列预测领域也展现出巨大潜力。

  2. KAN网络:KAN网络基于Kolmogorov-Arnold定理,通过可学习的激活函数来逼近复杂函数关系。KAN网络在函数拟合、偏微分方程求解等方面表现出色,具有较高的准确性和可解释性。

  3. 结合动机:将Transformer与KAN结合,旨在利用Transformer在捕捉长期依赖关系方面的优势,以及KAN在处理复杂非线性关系方面的能力,共同提升负荷预测的精度和效率。

三、模型构建

  1. 数据预处理:对原始负荷数据进行清洗、变换和特征选择等预处理步骤,以消除噪声、缺失值和异常值,并提取对预测有用的特征。

  2. Transform-KAN模型设计

    • 输入层:接收预处理后的时间序列数据,并进行必要的编码和嵌入处理。

    • Transformer层:利用Transformer模型的编码器部分,通过自注意力机制捕捉负荷数据中的长期依赖关系,并生成高层次的特征表示。

    • KAN层:将Transformer层的输出作为KAN网络的输入,利用KAN网络中的一维激活函数和样条曲线逼近能力,进一步处理复杂的非线性关系,并生成最终的预测结果。

    • 输出层:输出预测结果,即未来某时刻的负荷值。

  3. 模型训练与优化

    • 损失函数:采用均方误差(MSE)、平均绝对误差(MAE)等作为损失函数,以评估预测结果与真实值之间的差异。

    • 优化算法:使用Adam等优化算法对模型参数进行迭代更新,以最小化损失函数。

    • 超参数调整:通过交叉验证等方法调整学习率、批次大小、迭代次数等超参数,以优化模型的性能。

四、实验结果与分析

通过实验验证Transform-KAN模型在负荷预测任务中的性能。实验结果表明,与单一使用Transformer或KAN的模型相比,Transform-KAN模型能够更准确地捕捉负荷数据中的复杂关系,提高预测精度。同时,由于Transformer模型的并行处理能力,Transform-KAN模型在训练和预测过程中也表现出较高的效率。

五、结论与展望

本文提出的基于Transform-KAN的负荷预测模型在电力负荷预测领域展现出良好的性能。通过结合Transformer和KAN的优势,该模型能够更有效地处理时间序列数据中的复杂关系,提高预测精度和效率。未来的研究可以进一步探索Transform-KAN模型在不同场景下的应用,以及如何通过优化算法和模型结构来进一步提升预测性能。

📚2 运行结果

部分代码:

# 初始化存储各个评估指标的字典。
table = PrettyTable(['测试集指标','MSE', 'RMSE', 'MAE', 'MAPE','R2'])
for i in range(n_out):
    # 遍历每一个预测步长。每一列代表一步预测,现在是在求每步预测的指标
    actual = [float(row[i]) for row in Ytest]  #一列列提取
    # 从测试集中提取实际值。
    predicted = [float(row[i]) for row in predicted_data]
    # 从预测结果中提取预测值。
    mse = mean_squared_error(actual, predicted)
    # 计算均方误差(MSE)。
    mse_dic.append(mse)
    rmse = sqrt(mean_squared_error(actual, predicted))
    # 计算均方根误差(RMSE)。
    rmse_dic.append(rmse)
    mae = mean_absolute_error(actual, predicted)
    # 计算平均绝对误差(MAE)。
    mae_dic.append(mae)
    MApe = mape(actual, predicted)
    # 计算平均绝对百分比误差(MAPE)。
    mape_dic.append(MApe)
    r2 = r2_score(actual, predicted)
    # 计算R平方值(R2)。
    r2_dic.append(r2)
    if n_out == 1:
        strr = '预测结果指标:'
    else:
        strr = '第'+ str(i + 1)+'步预测结果指标:'
    table.add_row([strr, mse, rmse, mae, str(MApe)+'%', str(r2*100)+'%'])

return mse_dic,rmse_dic, mae_dic, mape_dic, r2_dic, table
# 返回包含所有评估指标的字典。

🎉3 参考文献

文章中一些内容引自网络,会注明出处或引用为参考文献,难免有未尽之处,如有不妥,请随时联系删除。

[1]张惟东.基于CNN-LSTM-Attention的短期电力负荷预测研究[D].兰州理工大学,2022.

[2]姚芳,汤俊豪,陈盛华,等.基于ISSA-CNN-GRU模型的电动汽车充电负荷预测方法[J].电力系统保护与控制, 2023, 51(16):158-167.

[3]姚芳,汤俊豪,陈盛华,等.基于ISSA-CNN-GRU模型的电动汽车充电负荷预测方法[J].电力系统保护与控制, 2023, 51(16):158-167.

[4]姚程文、杨苹、刘泽健.基于CNN-GRU混合神经网络的负荷预测方法[J].电网技术, 2020, 44(9):8.DOI:10.13335/j.1000-3673.pst.2019.2058.

[5]谢志坚.基于CNN-BAS-GRU模型的短期电力负荷预测研究[J].现代计算机, 2023, 29(21):15-20.

[6]杨超.基于ISSA优化CNN-BiGRU-Self Attention的短期电力负荷预测研究[D].陕西理工大学,2024. 

🌈4 Python代码、数据

资料获取,更多粉丝福利,MATLAB|Simulink|Python资源获取

                                                           在这里插入图片描述

好的,下面是基于LSTM的空调负荷预测Python代码参考: ```python # 导入相关的库 import pandas as pd import numpy as np from sklearn.preprocessing import MinMaxScaler from keras.models import Sequential from keras.layers import Dense, LSTM import matplotlib.pyplot as plt # 读入数据 data = pd.read_csv('data.csv') # 数据预处理 scaler = MinMaxScaler(feature_range=(0, 1)) data_scaled = scaler.fit_transform(data) # 划分数据集 train_size = int(len(data_scaled) * 0.7) test_size = len(data_scaled) - train_size train_data, test_data = data_scaled[0:train_size,:], data_scaled[train_size:len(data_scaled),:] # 准备数据集 def create_dataset(dataset, look_back=1): X, Y = [], [] for i in range(len(dataset)-look_back): X.append(dataset[i:(i+look_back), 0]) Y.append(dataset[i + look_back, 0]) return np.array(X), np.array(Y) look_back = 7 # 每次使用前7天数据进行预测 train_X, train_Y = create_dataset(train_data, look_back) test_X, test_Y = create_dataset(test_data, look_back) # 将输入数据重塑为 [样本数, 时间步长, 特征数] 的三维张量 train_X = np.reshape(train_X, (train_X.shape[0], 1, train_X.shape[1])) test_X = np.reshape(test_X, (test_X.shape[0], 1, test_X.shape[1])) # 构建LSTM模型 model = Sequential() model.add(LSTM(units=50, return_sequences=True, input_shape=(1, look_back))) model.add(LSTM(units=50)) model.add(Dense(1)) model.compile(loss='mean_squared_error', optimizer='adam') model.fit(train_X, train_Y, epochs=100, batch_size=1, verbose=2) # 进行预测 train_predict = model.predict(train_X) test_predict = model.predict(test_X) # 反归一化处理 train_predict = scaler.inverse_transform(train_predict) train_Y = scaler.inverse_transform([train_Y]) test_predict = scaler.inverse_transform(test_predict) test_Y = scaler.inverse_transform([test_Y]) # 计算误差 train_score = np.sqrt(mean_squared_error(train_Y[0], train_predict[:,0])) print('Train Score: %.2f RMSE' % (train_score)) test_score = np.sqrt(mean_squared_error(test_Y[0], test_predict[:,0])) print('Test Score: %.2f RMSE' % (test_score)) # 绘制预测结果与真实值的曲线图 train_predict_plot = np.empty_like(data_scaled) train_predict_plot[:, :] = np.nan train_predict_plot[look_back:len(train_predict)+look_back, :] = train_predict test_predict_plot = np.empty_like(data_scaled) test_predict_plot[:, :] = np.nan test_predict_plot[len(train_predict)+(look_back*2)+1:len(data_scaled)-1, :] = test_predict plt.plot(scaler.inverse_transform(data_scaled), label='True') plt.plot(train_predict_plot, label='Train Predict') plt.plot(test_predict_plot, label='Test Predict') plt.legend() plt.show() ``` 这是一个简单的示例代码,您可以根据自己的实际情况进行调整和优化。同时,您需要根据实际情况修改读取数据的方式,以及数据预处理、模型训练和评估等步骤。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值