基于残差学习的人机协作装配中机器人控制的任务导向安全领域研究(Matlab代码实现)

 💥💥💞💞欢迎来到本博客❤️❤️💥💥

🏆博主优势:🌞🌞🌞博客内容尽量做到思维缜密,逻辑清晰,为了方便读者。

⛳️座右铭:行百里者,半于九十。

📋📋📋本文目录如下:🎁🎁🎁

目录

💥1 概述

📚2 运行结果

🎉3 参考文献

🌈4 Matlab代码实现


💥1 概述

基于残差学习的人机协作装配中机器人控制的任务导向安全领域研究是指利用残差学习方法,在人机协作装配任务中,通过机器人控制技术实现任务导向的安全性研究。在这个领域中,研究者着重关注如何通过机器人控制算法来确保在人机协作装配过程中的安全性,同时保证任务的高效完成。

这一领域的研究通常涉及以下几个方面:

1. **残差学习方法的应用**:残差学习是一种深度学习方法,通过学习残差(实际输出与期望输出之间的差异)来训练模型。在人机协作装配中,可以利用残差学习来优化机器人控制策略,以提高任务的安全性和效率。

2. **任务导向的安全性**:研究如何将任务目标与安全性相结合,确保机器人在执行任务时不会对周围环境或人员造成伤害。这包括设计适当的控制算法,以确保机器人可以识别和避开潜在的危险情况,比如避免与人员碰撞或避免损坏装配件。

3. **人机协作装配技术**:研究如何实现机器人与人员之间的有效协作,以完成装配任务。这可能涉及到开发安全的人机交互界面,以及设计机器人控制算法,使机器人能够根据人员的动作和意图来调整自身行为。

4. **实验验证与系统集成**:对研究成果进行实验验证,验证所提出的机器人控制算法在实际装配场景中的有效性和可行性。同时,需要考虑将这些算法集成到实际的人机协作装配系统中,以实现真正的应用。

这一领域的研究对于提高人机协作装配任务的安全性、效率和可靠性具有重要意义,有助于推动工业自动化和智能制造技术的发展。

📚2 运行结果

部分代码:

% Reconstruct the path from start to goal
path = goal;
while ~isequal(path(1,:), start)
    idx = find(edges(:,2) == find(ismember(nodes, path(1,:),'rows')), 1);
    path = [nodes(edges(idx, 1), :); path];
end

% Displaying elapsed time and number of nodes in the path
disp(['Elapsed time for RRT: ', num2str(elapsed_time), ' seconds']);
disp(['Number of steps from start to goal: ', num2str(size(path,1)-1)]); % subtracting the start node

% Plotting the result
figure;
hold on;
xlim([1, N]);
ylim([1, M]);
plot(obstacles(:,2), obstacles(:,1), 'ks', 'MarkerSize', 10, 'MarkerFaceColor', 'k');  % Plot obstacles
plot(human(2), human(1), 'bo', 'MarkerSize', 10, 'MarkerFaceColor', 'b');  % Plot human
plot(start(2), start(1), 'go', 'MarkerSize', 10, 'MarkerFaceColor', 'g');  % Plot start
plot(goal(2), goal(1), 'ro', 'MarkerSize', 10, 'MarkerFaceColor', 'r');  % Plot goal
plot(path(:,2), path(:,1), 'm', 'LineWidth', 1);  % Plot path
title('RRT Path Planning');
xlabel('X');
ylabel('Y');
grid on;
hold off;

🎉3 参考文献

文章中一些内容引自网络,会注明出处或引用为参考文献,难免有未尽之处,如有不妥,请随时联系删除。

Cheng Zhu (2023) Task-Oriented Safety Field for Robot

[1]吴德文.面向人机协作的工业机器人外力检测研究与实现[D].武汉理工大学,2018.

[2]赵长盛.人机协作机器人的安全控制系统研究[D].东北大学,2019.

[3]陈鹏飞,赵鑫,赵欢.基于示教学习和自适应力控制的机器人装配研究[J].机电工程, 2020, 37(5):7.DOI:CNKI:SUN:JDGC.0.2020-05-018.

🌈4 Matlab代码实现

基于残差学习的卷积神经网络图像去噪研究是通过使用深度学习方法来提高图像质量,在减小图像噪声方面取得显著的效果。这种方法主要由卷积神经网络(CNN)和残差学习组成。 首先,通过深度学习方法训练一个CNN模型,用于对噪声图像进行去噪。该CNN模型包括多个卷积层和池化层,可以自动提取图像的特征。在训练过程,使用带有噪声的图像作为输入,并将其与原始无噪声图像进行对比来优化网络权重。 接下来,通过残差学习的思想,将CNN模型的输出与输入进行残差相加的操作,得到去噪后的图像。残差学习的目的是学习到图像的细节和纹理信息,并将其添加到输入图像,从而提高图像质量。 以下是一个简单的用MATLAB实现基于残差学习的卷积神经网络图像去噪的代码示例: ```matlab % 导入训练数据和标签 trainImages = imageDatastore('trainImagesFolder'); trainLabels = imageDatastore('trainLabelsFolder'); % 构建卷积神经网络模型 layers = [ imageInputLayer([256 256 1]) convolution2dLayer(3, 64, 'Padding', 'same') reluLayer convolution2dLayer(3, 64, 'Padding', 'same') reluLayer convolution2dLayer(3, 1, 'Padding', 'same') additionLayer(2) ]; % 设置训练参数 options = trainingOptions('adam', 'InitialLearnRate', 0.001, 'MaxEpochs', 10); % 训练网络 net = trainNetwork(trainImages, trainLabels, layers, options); % 导入测试数据 testImages = imageDatastore('testImagesFolder'); % 对测试数据进行去噪 denoisedImages = predict(net, testImages); % 显示原始和去噪后的图像 for i = 1:numel(testImages.Files) originalImage = imread(testImages.Files{i}); denoisedImage = denoisedImages{i}; figure; subplot(1, 2, 1); imshow(originalImage); title('Original Image'); subplot(1, 2, 2); imshow(denoisedImage); title('Denoised Image'); end ``` 以上代码示例,首先导入训练数据和标签,然后构建卷积神经网络模型。设置训练参数后,通过调用`trainNetwork`函数进行网络训练。接下来,导入测试数据并使用训练好的网络进行图像去噪。最后,显示原始图像和去噪后的图像。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值