电动汽车电池换电站选址与定容(Matlab代码实现)

   💥💥💞💞欢迎来到本博客❤️❤️💥💥

🏆博主优势:🌞🌞🌞博客内容尽量做到思维缜密,逻辑清晰,为了方便读者。

⛳️座右铭:行百里者,半于九十。

📋📋📋本文目录如下:🎁🎁🎁

目录

 ⛳️赠与读者

💥1 概述

一、电动汽车充电最大效用

二、电池换电站选址

三、EVs_4kW

四、EVs_7kW

五、no_EVs

六、最佳距离

📚2 运行结果

 2.1 电动汽车充电最大效用

 2.2 电池换电站选址

2.3 EVs_4kW

 2.4 EVs_7kW

2.5 no_EVs

2.6 最佳距离

🎉3 参考文献 

 🌈4 Matlab代码实现


 ⛳️赠与读者

👨‍💻做科研,涉及到一个深在的思想系统,需要科研者逻辑缜密,踏实认真,但是不能只是努力,很多时候借力比努力更重要,然后还要有仰望星空的创新点和启发点。建议读者按目录次序逐一浏览,免得骤然跌入幽暗的迷宫找不到来时的路,它不足为你揭示全部问题的答案,但若能解答你胸中升起的一朵朵疑云,也未尝不会酿成晚霞斑斓的别一番景致,万一它给你带来了一场精神世界的苦雨,那就借机洗刷一下原来存放在那儿的“躺平”上的尘埃吧。

     或许,雨过云收,神驰的天地更清朗.......🔎🔎🔎

💥1 概述

 随着电动汽车保有量的逐年增长,城市中电动汽车充换电基础设施的建设覆盖率越来越广,充换电基础设施的选址定容规划更是成为了城市交通网络规划建设中不可或缺的重要组成部分。本文对于“集中充电、统一配送”的换电模式下电池换电站的选址定容规划问题作出研究与探讨,对该模式下充换电基础设施的选址定容规划问题进行进一步研究与完善。与插充模式不同,换电模式需要考虑集中充电站与电池换电站的共同影响,从而进行电池换电站的选址定容规划。

      电池换电站的选址定容规划问题须先考虑当地的电动汽车日充换电需求负荷,因此本文围绕电动汽车日充电负荷预测问题,首先介绍了基于有序充电策略的四类不同用途电动汽车的充电行为模式,采用蒙特卡洛法分别随机抽取电动汽车的起始充电时间分布和日行驶里程数,计算出车辆的起始荷电状态和充满电所需时长,分别得出四类电动汽车的日充电总负荷,并对这四类电动汽车的日充电总负荷进行叠加进而得出总的电动汽车日充电负荷。

一、电动汽车充电最大效用

电动汽车充电的最大效用主要体现在提高充电效率、缩短充电时间以及优化用户体验上。为了实现这一目标,换电站或充电站需要采用高效的充电技术,如直流快充技术,并合理布局充电设施,确保电动汽车用户能够便捷、快速地获取充电服务。此外,通过智能充电管理系统优化充电行为,合理安排充电时间和负载,也可以进一步提高充电效用。

二、电池换电站选址

电池换电站的选址是一个复杂的过程,需要考虑多个因素。以下是一些关键要素:

  1. 地理位置:换电站应位于电动汽车用户集中、交通流量大的区域,如城市中心、商业区、居民区等。同时,应考虑城市交通网络布局约束,确保换电站易于到达。
  2. 环境因素:换电站的建设应考虑对周围环境的影响,如噪声污染和光污染等。此外,换电站的布局应尽可能减小对邻近道路交通的影响。
  3. 经济效益:换电站的选址应充分考虑经济效益,包括建设成本、运营成本以及电力销售量等。通过合理的选址,可以确保换电站的盈利能力和长期发展。
  4. 区域发展性:应考虑建设区域未来的电动汽车充电需求增长潜力,以及区域发展规划对换电站选址的影响。

三、EVs_4kW

对于4kW的电动汽车(EVs)充电需求,换电站或充电站需要提供相应的充电设施。这通常包括充电桩、电池更换设备等。在选址和定容时,需要考虑该功率等级电动汽车的数量、充电需求以及充电设施的布局和容量。通过合理的规划和设计,可以确保4kW电动汽车用户能够获得便捷、高效的充电服务。

四、EVs_7kW

与4kW电动汽车类似,7kW电动汽车的充电需求也需要得到充分考虑。在选址和定容过程中,应关注7kW电动汽车的数量、充电习惯以及充电设施的兼容性和效率。通过采用高效的充电技术和合理的设施布局,可以满足7kW电动汽车用户的充电需求,提高充电设施的利用率和用户体验。

五、no_EVs

在没有电动汽车(no_EVs)的区域,换电站或充电站的建设可能不是优先考虑的事项。然而,随着电动汽车的普及和发展,这些区域未来可能会产生充电需求。因此,在选址和定容时,可以预留一定的空间和资源,以便在未来根据实际需求进行扩建或升级。同时,可以通过宣传和推广活动,提高当地居民对电动汽车和充电设施的认知度和接受度。

六、最佳距离

最佳距离通常指的是相邻充电站或换电站之间的合理间距。这个距离需要根据电动汽车的续航里程、用户的充电需求以及充电设施的布局和容量等因素来确定。合理的间距可以确保电动汽车用户能够在需要时及时获取充电服务,同时避免资源浪费和过度竞争。在确定最佳距离时,可以考虑以下因素:

  1. 电动汽车续航里程:根据电动汽车的续航里程和用户的出行习惯,确定相邻充电站或换电站之间的合理间距。
  2. 充电需求分布:通过分析电动汽车用户的充电需求分布,确定充电设施的布局和容量,从而得出相邻设施之间的最佳距离。
  3. 交通网络状况:考虑城市交通网络的布局和交通流量情况,确保充电设施易于到达且能够满足用户的充电需求。

综上所述,电动汽车电池换电站的选址与定容研究是一个复杂而细致的过程,需要考虑多个因素和变量。通过合理的规划和设计,可以确保换电站或充电站能够满足电动汽车用户的充电需求,推动电动汽车的普及和发展。

📚2 运行结果

 2.1 电动汽车充电最大效用

 2.2 电池换电站选址

2.3 EVs_4kW

 

 2.4 EVs_7kW

2.5 no_EVs

2.6 最佳距离

 

 

部分代码:

%% 可视化

%电流 / 载流量
figure
bar(peak_line_currents)
hold on
plot(1:length(peak_line_currents), ones(size(peak_line_currents)), 'k--')
axis([1 length(peak_line_currents) 0 1.5])
xlabel('线路数')
ylabel('电流 / 载流量')
grid on


% 负载电压
figure
bar(peak_node_voltages,'BaseValue',1)
hold on
plot(1:length(peak_node_voltages), 1.1* ones(size(peak_node_voltages)), 'k--')
plot(1:length(peak_node_voltages), 0.9* ones(size(peak_node_voltages)), 'k--')
axis([1 length(peak_node_voltages) 0.8 1.2])
xlabel('负载数')
ylabel('电压 (p.u.)')
grid on

%变压器视在功率
figure
plot(1:length(trafo_power), trafo_power)
hold on
plot(1:length(trafo_power), 0.8 * ones(1,length(trafo_power)), 'k--')
xlim([1 length(trafo_power)])
xlabel('时间(min)')
ylabel({'变压器', '视在功率(MVA)'})
grid on

🎉3 参考文献 

文章中一些内容引自网络,会注明出处或引用为参考文献,难免有未尽之处,如有不妥,请随时联系删除。(文章内容仅供参考,具体效果以运行结果为准)

[1]武渊,叶宁.城市路网中电动汽车充电站双层多目标选址定容模型[J].山西大学学报(自然科学版),2021,44(04):695-704.DOI:10.13451/j.sxu.ns.2021045.

[2]张兆轩. 基于改进蝙蝠算法的电动汽车电池换电站选址定容[D].广东工业大学,2021.DOI:10.27029/d.cnki.ggdgu.2021.001682.

 🌈Matlab代码实现

资料获取,更多粉丝福利,MATLAB|Simulink|Python资源获取

                                                           在这里插入图片描述

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值