NNDL 实验五 前馈神经网络(1)二分类任务

目录

4.1神经元

4.1.1净活性值

【思考题】

4.1.2激活函数

4.2基于前馈神经网络的二分类任务

 4.2.1数据集构建

 4.2.2模型构建

4.2.2.1线性层算子

4.2.2.2Logstic算子

 4.2.2.3层次串行组合

4.2.3损失函数

4.2.4模型优化

4.2.4.1反向传播算法

4.2.4.2损失函数

4.2.4.3Logistic算子

 4.2.4.4线性层

4.2.4.5整个网络

4.2.4.6优化器

 4.2.5完善Runner类

4.2.6模型训练

 4.2.7性能评价

【思考题】

参考


神经网络是由神经元按照一定的连接结构组合而成的网络。神经网络可以看作一个函数,通过简单非线性函数的多次复合,实现输入空间到输出空间的复杂映射 。
前馈神经网络是最早发明的简单人工神经网络。整个网络中的信息单向传播,可以用一个有向无环路图表示,这种网络结构简单,易于实现。

4.1神经元

神经网络的基本组成单元为带有非线性激活函数的神经元,其结构如如图所示。神经元是对生物神经元的结构和特性的一种简化建模,接收一组输入信号并产生输出。

4.1.1净活性值

假设一个神经元接收的输入为x\in\mathbb{R} ^{D},其权重向量为w\in \mathbb{R}^{D},神经元所获得的输入信号,即净活性值z的计算方法为:

z=w^{T}x+b

其中b为偏置。

为了提高预测样本的效率,我们通常会将N个样本归为一组进行成批地预测。

z=Xw+b

其中X\in \mathbb{R}^{N*D}为N个样本的特征矩阵,z\in \mathbb{R}^{N}为N个预测值组成的列向量。

使用pytorch计算一组输入的净活性值。代码实现如下:

import torch

# 2个特征数为5的样本
X = torch.rand(size=[2, 5])

# 含有5个参数的权重向量
w = torch.rand(size=[5, 1])
# 偏置项
b = torch.rand(size=[1, 1])

# 使用'torch.matmul'实现矩阵相乘
z = torch.matmul(X, w) + b
print("input X:", X)
print("weight w:", w, "\nbias b:", b)
print("output z:", z)

运行结果:

 

 

【思考题】

加权相加仿射变换之间有什么区别和联系?

 

加权和就是对输入的信息进行线性变换,仿射变换就是线性变换+平移
加权和变换只是线性的
仿射变换,又称仿射映射,是指在几何中,一个向量空间进行一次线性变换并接上一个平移,变换为另一个向量空间。
仿射变换是在几何上定义为两个向量空间之间的一个仿射变换或者仿射映射(来自拉丁语,affine,“和…相关”)由一个非奇异的线性变换(运用一次函数进行的变换)接上一个平移变换组成。

 torch.nn.Linear()

nn.Linear表示的是线性变换,原型就是初级数学里学到的线性函数:y=kx+b
不过在深度学习中,变量都是多维张量,乘法就是矩阵乘法,加法就是矩阵加法,因此nn.Linear()运行的真正的计算就是:

output = weight @ input + bias

@: 在python中代表矩阵乘法

input: 表示输入的Tensor,可以有多个维度

weights: 表示可学习的权重,shape=(output_feature,in_feature)

bias: 表示科学习的偏置,shape=(output_feature)

in_feature: nn.Linear 初始化的第一个参数,即输入Tensor最后一维的通道数

out_feature: nn.Linear 初始化的第二个参数,即返回Tensor最后一维的通道数

output: 表示输入的Tensor,可以有多个维度

4.1.2激活函数

激活函数通常为非线性函数,可以增强神经网络的表示能力和学习能力。

常用的激活函数有S型函数ReLU函数

4.1.2.1 Sigmoid 型函数

常用的 Sigmoid 型函数有 Logistic 函数和 Tanh 函数。

使用python实现并可视化“Logistic函数、Tanh函数”

import torch

import matplotlib.pyplot as plt

# Logistic函数
def logistic(z):
    return 1.0 / (1.0 + torch.exp(-z))

# Tanh函数
def tanh(z):
    return (torch.exp(z) - torch.exp(-z)) / (torch.exp(z) + torch.exp(-z))

# 在[-10,10]的范围内生成10000个输入值,用于绘制函数曲线
z = torch.linspace(-10, 10, 10000)

plt.figure()
plt.plot(z.tolist(), logistic(z).tolist(), color='#e4007f', label="Logistic Function")
plt.plot(z.tolist(), tanh(z).tolist(), color='b', label="Tanh Function")

ax = plt.gca() # 获取轴,默认有4个
# 隐藏两个轴,通过把颜色设置成none
ax.spines['top'].set_color('none')
ax.spines['right'].set_color('none')
# 调整坐标轴位置
ax.spines['left'].set_position(('data',0))
ax.spines['bottom'].set_position(('data',0))
plt.legend(loc='lower right', fontsize='large')

plt.savefig('fw-logistic-tanh.pdf')
plt.show()


在pytorch中,可以通过调用pytorch.nn.functional.sigmoid和pytorch.nn.functional.tanh实现对张量的Logistic和Tanh计算。

4.1.2.2ReLU型函数

常见的ReLU函数有ReLU和带泄露的ReLU(Leaky ReLU)

\operatorname{ReL} U(z)=\max (0, z)

\operatorname{LeakyReLU}(z)=\max (0, z)+\lambda \min (0, z)

其中\lambda为超参数

可视化ReLU和带泄露的ReLU的函数的代码实现和可视化如下:

# ReLU
def relu(z):
    return torch.maximum(z, torch.as_tensor(0.))

# 带泄露的ReLU
def leaky_relu(z, negative_slope=0.1):
  
    a1 = (torch.tensor((z > 0), dtype=torch.float32) * z) 
    a2 = (torch.tensor((z <= 0),  dtype=torch.float32) * (negative_slope * z))
    return a1 + a2

# 在[-10,10]的范围内生成一系列的输入值,用于绘制relu、leaky_relu的函数曲线
z = torch.linspace(-10, 10, 10000)

plt.figure()
plt.plot(z.tolist(), relu(z).tolist(), color="#e4007f", label="ReLU Function")
plt.plot(z.tolist(), leaky_relu(z).tolist(), color="#f19ec2", linestyle="--", label="LeakyReLU Function")

ax = plt.gca()
ax.spines['top'].set_color('none')
ax.spines['right'].set_color('none')
ax.spines['left'].set_position(('data',0))
ax.spines['bottom'].set_position(('data',0))
plt.legend(loc='upper left', fontsize='large')
plt.savefig('fw-relu-leakyrelu.pdf')
plt.show()

在pytorch中可以通过调用torch.nn.functional.relu和torch.nn.functional.leaky_relu完成ReLU与带泄露的ReLU的计算。

4.2基于前馈神经网络的二分类任务

前馈神经网络的网络结构如所示。每一层获取前一层神经元的活性值,并重复上述计算得到该层的活性值,传入到下一层。整个网络中无反馈,信号从输入层向输出层逐层的单向传播,得到网络最后的输出a^{(L)}

 4.2.1数据集构建

这里,我们使用第3.1.1节中构建的二分类数据集:Moon1000数据集,其中训练集640条、验证集160条、测试集200条。
该数据集的数据是从两个带噪音的弯月形状数据分布中采样得到,每个样本包含2个特征。(noise设置为0.1)

from nndl.dataset import make_moons
 
n_samples = 1000
X, y = make_moons(n_samples=n_samples, shuffle=True, noise=0.1)
 
num_train = 640
num_dev = 160
num_test = 200
 
X_train, y_train = X[:num_train], y[:num_train]
X_dev, y_dev = X[num_train:num_train + num_dev], y[num_train:num_train + num_dev]
X_test, y_test = X[num_train + num_dev:], y[num_train + num_dev:]
 
y_train = y_train.reshape([-1,1])
y_dev = y_dev.reshape([-1,1])
y_test = y_test.reshape([-1,1])

 4.2.2模型构建

为了更高效的构建前馈神经网络,我们先定义每一层的算子,然后再通过算子组合构建整个前馈神经网络。

假设网络的第l ll层的输入为第l − 1 l-1l−1层的神经元活性值a ( l − 1 ) a(l−1)a(l−1),经过一个仿射变换,得到该层神经元的净活性值z zz,再输入到激活函数得到该层神经元的活性值a。

在实践中,为了提高模型的处理效率,通常将N NN个样本归为一组进行成批地计算。假设网络第l层的输入为A(l-1) \in R N \times M l-1,其中每一行为一个样本,则前馈网络中第l层的计算公式为
Z(l)=A(l-1) W(l)+b(l) \in R N \times M l

A(l)=f l(Z(l)) \in R N \times M l

4.2.2.1线性层算子

from nndl.op import Op
 
# 实现线性层算子
class Linear(Op):
    def __init__(self, input_size, output_size, name, weight_init=torch.normal, bias_init=torch.zeros):
 
        self.params = {}
        # 初始化权重
        self.params['W'] = weight_init(0,1,[input_size,output_size])
        # 初始化偏置
        self.params['b'] = bias_init([1,output_size])
        self.inputs = None
        self.name = name
 
    def forward(self, inputs):
        self.inputs = inputs
        outputs = torch.matmul(self.inputs, self.params['W']) + self.params['b']
        return outputs

4.2.2.2Logstic算子

class Logistic(Op):
    def __init__(self):
        self.inputs = None
        self.outputs = None

    def forward(self, inputs):
        """
        输入:
            - inputs: shape=[N,D]
        输出:
            - outputs:shape=[N,D]
        """
        outputs = 1.0 / (1.0 + torch.exp(-inputs))
        self.outputs = outputs
        return outputs

 4.2.2.3层次串行组合

在定义了神经层的线性层算子和激活函数算子之后,我们可以不断交叉重复使用它们来构建一个多层的神经网络。

接下来我们实现一个两层的用于二分类任务的前馈神经网络,选用Logistic作为激活函数,可以利用上面实现的线性层和激活函数算子来组装。

class Model_MLP_L2(Op):
    def __init__(self, input_size, hidden_size, output_size):
        self.fc1 = Linear(input_size, hidden_size, name="fc1")
        self.act_fn1 = Logistic()
        self.fc2 = Linear(hidden_size, output_size, name="fc2")
        self.act_fn2 = Logistic()
 
    def __call__(self, X):
        return self.forward(X)
 
    def forward(self, X):
        z1 = self.fc1(X)
        a1 = self.act_fn1(z1)
        z2 = self.fc2(a1)
        a2 = self.act_fn2(z2)
        return a2

实例化一个两层的前馈网络,令其输入层维度为5,隐藏层维度为10,输出层维度为1。
并随机生成一条长度为5的数据输入两层神经网络,观察输出结果。

# 实例化模型
model = Model_MLP_L2(input_size=5, hidden_size=10, output_size=1)
# 随机生成1条长度为5的数据
X = torch.rand([1, 5])
result = model(X)
print ("result: ", result)

4.2.3损失函数

二分类交叉熵损失函数

4.2.4模型优化

神经网络的参数主要是通过梯度下降法进行优化的,因此需要计算最终损失对每个参数的梯度。
由于神经网络的层数通常比较深,其梯度计算和上一章中的线性分类模型的不同的点在于:线性模型通常比较简单可以直接计算梯度,而神经网络相当于一个复合函数,需要利用链式法则进行反向传播来计算梯度。

4.2.4.1反向传播算法

前馈神经网络的参数梯度通常使用误差反向传播算法来计算。使用误差反向传播算法的前馈神经网络训练过程可以分为以下三步:

在上面实现算子的基础上,来实现误差反向传播算法。在上面的三个步骤中,

第1步是前向计算,可以利用算子的forward()方法来实现;
第2步是反向计算梯度,可以利用算子的backward()方法来实现;
第3步中的计算参数梯度也放到backward()中实现,更新参数放到另外的优化器中专门进行。
这样,在模型训练过程中,我们首先执行模型的forward(),再执行模型的backward(),就得到了所有参数的梯度,之后再利用优化器迭代更新参数。

以这我们这节中构建的两层全连接前馈神经网络Model_MLP_L2为例,下图给出了其前向和反向计算过程:

下面我们按照反向的梯度传播顺序,为每个算子添加backward()方法,并在其中实现每一层参数的梯度的计算。

4.2.4.2损失函数

二分类交叉熵损失函数对神经网络的输出\hat y的偏导数为:

\begin{aligned} \frac{\partial R}{\partial \hat{\boldsymbol{y}}}=&-\frac{1}{N}\left(\operatorname{dialog}\left(\frac{1}{\hat{\boldsymbol{y}}}\right) \boldsymbol{y}-\operatorname{dialog}\left(\frac{1}{1-\hat{\boldsymbol{y}}}\right)(1-\boldsymbol{y})\right) \\ &=-\frac{1}{N}\left(\frac{1}{\hat{\boldsymbol{y}}} \odot \boldsymbol{y}-\frac{1}{1-\hat{\boldsymbol{y}}} \odot(1-\boldsymbol{y})\right) \end{aligned}

其中dialog(x)表示以向量x为对角元素的对角阵,\frac{1}{x}=\frac{1}{x_{1}},\frac{1}{x_{N}}表示逐元素除,⊙表示逐元素积。

 实现损失函数的backward(),代码实现如下:

class BinaryCrossEntropyLoss(Op):
    def __init__(self, model):
        self.predicts = None
        self.labels = None
        self.num = None
        self.model = model
 
    def __call__(self, predicts, labels):
        return self.forward(predicts, labels)
 
    def forward(self, predicts, labels):
        self.predicts = predicts
        self.labels = labels
        self.num = self.predicts.shape[0]
        loss = -1. / self.num * (torch.matmul(self.labels.t(), torch.log(self.predicts)) 
                + torch.matmul((1-self.labels.t()), torch.log(1-self.predicts)))
 
        loss = torch.squeeze(loss, axis=1)
        return loss
 
    def backward(self):
        # 计算损失函数对模型预测的导数
        loss_grad_predicts = -1.0 * (self.labels / self.predicts - 
                       (1 - self.labels) / (1 - self.predicts)) / self.num
        # 梯度反向传播
        self.model.backward(loss_grad_predicts)

4.2.4.3Logistic算子

  由于Logistic函数中没有参数,这里不需要在backward()方法中计算该算子参数的梯度。

class Logistic(Op):
    def __init__(self):
        self.inputs = None
        self.outputs = None
        self.params = None
 
    def forward(self, inputs):
        outputs = 1.0 / (1.0 + torch.exp(-inputs))
        self.outputs = outputs
        return outputs
 
    def backward(self, grads):
        # 计算Logistic激活函数对输入的导数
        outputs_grad_inputs = torch.multiply(self.outputs, (1.0 - self.outputs))
        return torch.multiply(grads,outputs_grad_inputs)

 4.2.4.4线性层

 具体代码实现如下:

class Linear(Op):
    def __init__(self, input_size, output_size, name, weight_init=torch.normal, bias_init=torch.zeros):
        self.params = {}
        self.params['W'] = weight_init(0,1,[input_size, output_size])
        self.params['b'] = bias_init([1, output_size])
        self.inputs = None
        self.grads = {}
        self.name = name
 
    def forward(self, inputs):
        self.inputs = inputs
        outputs = torch.matmul(self.inputs, self.params['W']) + self.params['b']
        return outputs
 
    def backward(self, grads):
        self.grads['W'] = torch.matmul(self.inputs.T, grads)
        self.grads['b'] = torch.sum(grads, axis=0)
        # 线性层输入的梯度
        return torch.matmul(grads, self.params['W'].T)

4.2.4.5整个网络

实现完整的两层神经网络的前向和反向计算。代码实现如下:

class Model_MLP_L2(Op):
    def __init__(self, input_size, hidden_size, output_size):
        # 线性层
        self.fc1 = Linear(input_size, hidden_size, name="fc1")
        # Logistic激活函数层
        self.act_fn1 = Logistic()
        self.fc2 = Linear(hidden_size, output_size, name="fc2")
        self.act_fn2 = Logistic()
        self.layers = [self.fc1, self.act_fn1, self.fc2, self.act_fn2]
 
    def __call__(self, X):
        return self.forward(X)
 
    # 前向计算
    def forward(self, X):
        z1 = self.fc1(X)
        a1 = self.act_fn1(z1)
        z2 = self.fc2(a1)
        a2 = self.act_fn2(z2)
        return a2
        
    # 反向计算
    def backward(self, loss_grad_a2):
        loss_grad_z2 = self.act_fn2.backward(loss_grad_a2)
        loss_grad_a1 = self.fc2.backward(loss_grad_z2)
        loss_grad_z1 = self.act_fn1.backward(loss_grad_a1)
        loss_grad_inputs = self.fc1.backward(loss_grad_z1)

4.2.4.6优化器

在计算好神经网络参数的梯度之后,我们将梯度下降法中参数的更新过程实现在优化器中。

与第3章中实现的梯度下降优化器SimpleBatchGD不同的是,此处的优化器需要遍历每层,对每层的参数分别做更新。

from abc import abstractmethod
class Optimizer(object):
    def __init__(self, init_lr, model):  # 优化器类初始化
        #初始化学习率,用于参数更新的计算
        self.init_lr = init_lr
        #指定优化器需要优化的模型
        self.model = model
 
    @abstractmethod
    def step(self):
        """
        定义每次迭代如何更新参数
        """
        pass
 
class BatchGD(Optimizer):
    def __init__(self, init_lr, model):
        super(BatchGD, self).__init__(init_lr=init_lr, model=model)
 
    def step(self):
        # 参数更新
        for layer in self.model.layers: # 遍历所有层
            if isinstance(layer.params, dict):
                for key in layer.params.keys():
                    layer.params[key] = layer.params[key] - self.init_lr * layer.grads[key]

 4.2.5完善Runner类

1、基于3.1.6实现的 RunnerV2 类主要针对比较简单的模型。而在本章中,模型由多个算子组合而成,通常比较复杂,因此本节继续完善并实现一个改进版: RunnerV2_1类,其主要加入的功能有:

2、支持自定义算子的梯度计算,在训练过程中调用self.loss_fn.backward()从损失函数开始反向计算梯度;
每层的模型保存和加载,将每一层的参数分别进行保存和加载。

import os
os.getcwd()
class RunnerV2_1(object):
    def __init__(self, model, optimizer, metric, loss_fn, **kwargs):
        self.model = model
        self.optimizer = optimizer
        self.loss_fn = loss_fn
        self.metric = metric
 
        # 记录训练过程中的评估指标变化情况
        self.train_scores = []
        self.dev_scores = []
 
        # 记录训练过程中的评价指标变化情况
        self.train_loss = []
        self.dev_loss = []
 
    def train(self, train_set, dev_set, **kwargs):
        # 传入训练轮数,如果没有传入值则默认为0
        num_epochs = kwargs.get("num_epochs", 0)
        # 传入log打印频率,如果没有传入值则默认为100
        log_epochs = kwargs.get("log_epochs", 100)
 
        # 传入模型保存路径
        save_dir = kwargs.get("save_dir", None)
        
        # 记录全局最优指标
        best_score = 0
        # 进行num_epochs轮训练
        for epoch in range(num_epochs):
            X, y = train_set
            # 获取模型预测
            logits = self.model(X)
            # 计算交叉熵损失
            trn_loss = self.loss_fn(logits, y) # return a tensor
            self.train_loss.append(trn_loss.item())
            # 计算评估指标
            trn_score = self.metric(logits, y).item()
            self.train_scores.append(trn_score)
            self.loss_fn.backward()
 
            # 参数更新
            self.optimizer.step()
            dev_score, dev_loss = self.evaluate(dev_set)
            # 如果当前指标为最优指标,保存该模型
            if dev_score > best_score:
                print(f"[Evaluate] best accuracy performence has been updated: {best_score:.5f} --> {dev_score:.5f}")
                best_score = dev_score
                if save_dir:
                    self.save_model(save_dir)
 
            if log_epochs and epoch % log_epochs == 0:
                print(f"[Train] epoch: {epoch}/{num_epochs}, loss: {trn_loss.item()}")
                
    def evaluate(self, data_set):
        X, y = data_set
        # 计算模型输出
        logits = self.model(X)
        # 计算损失函数
        loss = self.loss_fn(logits, y).item()
        self.dev_loss.append(loss)
        # 计算评估指标
        score = self.metric(logits, y).item()
        self.dev_scores.append(score)
        return score, loss
    
    def predict(self, X):
        return self.model(X)
 
    def save_model(self, save_dir):
        # 对模型每层参数分别进行保存,保存文件名称与该层名称相同
        for layer in self.model.layers: # 遍历所有层
            if isinstance(layer.params, dict):
                torch.save(layer.params, os.path.join(save_dir, layer.name+".pt"))
 
    def load_model(self, model_dir):
        # 获取所有层参数名称和保存路径之间的对应关系
        model_file_names = os.listdir(model_dir)
        name_file_dict = {}
        for file_name in model_file_names:
            name = file_name.replace(".pt","")
            name_file_dict[name] = os.path.join(model_dir, file_name)
 
        # 加载每层参数
        for layer in self.model.layers: # 遍历所有层
            if isinstance(layer.params, dict):
                name = layer.name
                file_path = name_file_dict[name]
                layer.params = torch.load(file_path)

4.2.6模型训练

共训练2000个epoch,评价指标为准确率accuracy。

import os
os.getcwd()
#3.1.5评价指标
def accuracy(preds, labels):
    print(preds)
    # 判断是二分类任务还是多分类任务,preds.shape[1]=1时为二分类任务,preds.shape[1]>1时为多分类任务
    if preds.shape[1] == 1:
        # 二分类时,判断每个概率值是否大于0.5,当大于0.5时,类别为1,否则类别为0
        # 使用'torch.can_cast'将preds的数据类型转换为float32类型
        preds = torch.can_cast((preds>=0.5).dtype,to=torch.float32)
    else:
        # 多分类时,使用'torch.argmax'计算最大元素索引作为类别
        preds = torch.argmax(preds,dim=1)
        torch.can_cast(preds.dtype,torch.int32)
    return torch.mean(torch.as_tensor((preds == labels), dtype=torch.float32))
 
torch.manual_seed(123)
epoch_num = 1000
model_saved_dir = "D:\\model"
 
# 输入层维度为2
input_size = 2
# 隐藏层维度为5
hidden_size = 5
# 输出层维度为1
output_size = 1
 
# 定义网络
model = Model_MLP_L2(input_size=input_size, hidden_size=hidden_size, output_size=output_size)
 
# 损失函数
loss_fn = BinaryCrossEntropyLoss(model)
 
# 优化器
learning_rate = 2.0
optimizer = BatchGD(learning_rate, model)
 
# 评价方法
metric = accuracy
 
# 实例化RunnerV2_1类,并传入训练配置
runner = RunnerV2_1(model, optimizer, metric, loss_fn)
runner.train([X_train, y_train], [X_dev, y_dev], num_epochs=epoch_num, log_epochs=50, save_dir=model_saved_dir)

 可视化观察训练集与验证集的损失函数变化情况。

print(runner.train_loss)
# 打印训练集和验证集的损失
plt.figure()
plt.plot(range(epoch_num), runner.train_loss, color="#e4007f", label="Train loss")
plt.plot(range(epoch_num), runner.dev_loss, color="#f19ec2", linestyle='--', label="Dev loss")
plt.xlabel("epoch", fontsize='large')
plt.ylabel("loss", fontsize='large')
plt.legend(fontsize='x-large')
plt.savefig('fw-loss2.pdf')
plt.show()

 4.2.7性能评价

# 加载训练好的模型
runner.load_model(model_saved_dir)
# 在测试集上对模型进行评价
score, loss = runner.evaluate([X_test, y_test])
 
print("[Test] score/loss: {:.4f}/{:.4f}".format(score, loss))

[Test] score/loss: 0.5150/0.7322

下面对结果进行可视化:(noise=0.1)

import math
 
# 均匀生成40000个数据点
x1, x2 = torch.meshgrid(torch.linspace(-math.pi, math.pi, 200), torch.linspace(-math.pi, math.pi, 200))
x = torch.stack([torch.flatten(x1), torch.flatten(x2)], axis=1)
 
# 预测对应类别
y = runner.predict(x)
y = torch.squeeze(torch.as_tensor((y>=0.5),dtype=torch.float32),dim=-1)
 
# 绘制类别区域
plt.ylabel('x2')
plt.xlabel('x1')
plt.scatter(x[:,0].tolist(), x[:,1].tolist(), c=y.tolist(), cmap=plt.cm.Spectral)
 
plt.scatter(X_train[:, 0].tolist(), X_train[:, 1].tolist(), marker='*', c=torch.squeeze(y_train,axis=-1).tolist())
plt.scatter(X_dev[:, 0].tolist(), X_dev[:, 1].tolist(), marker='*', c=torch.squeeze(y_dev,axis=-1).tolist())
plt.scatter(X_test[:, 0].tolist(), X_test[:, 1].tolist(), marker='*', c=torch.squeeze(y_test,axis=-1).tolist())

 

 

【思考题】

对比3.1 基于Logistic回归的二分类任务 & 4.2 基于前馈神经网络的二分类任务谈谈自己的看法

从Logistic回归到神经网络是一个循序渐进的过程。

逻辑回归可以看作是一个最简单的神经网络,理解逻辑回归对于理解神经网络的原理非常有帮助。二者都是基于最小化损失函数的思想,利用梯度下降法求导来更新权重参数w。但实际上求导过程中逻辑回归只需一步求导就行,而神经网络有若干个隐藏层,就是一个个加权求和再激活的嵌套,也就是链式求导。

Logistic回归模型可以直接计算梯度,较简单简单,而神经网络相当于一个复合函数,层数通常比较深,需要利用链式法则进行反向传播来计算梯度,是一个需要注意的点。

感觉当样本容量大的时候,神经网络的效果要比Logistic回归好。

参考

(1条消息) NNDL 实验五 前馈神经网络(1)二分类任务_HBU_David的博客-CSDN博客

 (1条消息) 深度学习第五次实验_白小码i的博客-CSDN博客

 

  • 1
    点赞
  • 1
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值