科技职场心理健康与自闭症谱系障碍的智能研究
科技职场心理健康研究
在科技职场中,研究人员运用机器学习技术来探究员工的心理健康特征。由于数据具有高维度且多为分类数据的特点,主成分分析(PCP)可能无法提供有效信息,因为生成的图形会变得混乱,形成类似意大利面图的效果。
除了聚类分析,研究人员还进行了特征重要性分析,以“你目前是否患有心理健康障碍?”作为伪目标。通过应用并拟合随机森林分类器到模型中,选择了10个被认为“重要性”最高的特征,这些特征主要围绕个人当前和过去的精神状态,具体包括是否患有心理健康障碍、未妥善治疗时是否影响工作以及过去是否有心理健康障碍等。
接着,研究人员使用人工神经网络构建了一个预测模型,以“你目前是否患有心理健康障碍?”作为目标变量,试图根据之前的回答准确预测响应。为了降低数据维度,研究人员将数据集进一步缩减至包含50个特征,以该目标特征作为目标,利用其余49个特征对模型进行测试和训练。数据按照67:33的比例划分为训练数据和测试数据。目标有三种可能的分类值(“是”、“否”或“可能”),因此输出层的形状为3。
模型参数/超参数调整如下表所示:
| 参数/超参数 | 数值 |
| — | — |
| 层数 | 4 |
| 训练轮数 | 40 |
| 批次大小 | 1 |
| 每层神经元数量 | 40 |
最终,基于验证数据的准确率和损失率分别平均为76.8%和0.78%。与训练数据的结果对比可参考相关图表。增加训练轮数会导致训练和测试的准确率及损失率之间的差异增大,这表明模型可能出现过拟合,这可能是由于数据集规模较小所致。尽管验证数据的准确率与测试数据相近,但总体
超级会员免费看
订阅专栏 解锁全文
883

被折叠的 条评论
为什么被折叠?



