Opencv实战(2)绘图与图像操作

本文介绍了OpenCV库中关于绘图函数(line,rectangle,circle)的使用,以及图像处理中的颜色空间转换(cvtColor)、inRange函数、以及形态操作如腐蚀、膨胀和开闭运算的方法。
摘要由CSDN通过智能技术生成

Opencv实战(2)绘图与图像操作

指路前文:Opencv实战(1)读取与像素操作

三、基本绘图

(1).line

void cv::line(InputOutputArray img,Point pt1, Point pt2, const Scalar & color, int  thickness = 1, int  lineType = LINE_8, int  shift = 0)
imgImage.
pt1First point of the line segment.
pt2Second point of the line segment.
colorLine color.
thicknessLine thickness.
lineTypeType of the line. See LineTypes.
shiftNumber of fractional bits in the point coordinates.

(2).rectangle

void cv::rectangle(InputOutputArray img, Point pt1, Point pt2, const Scalar & color, int  thickness = 1,int  lineType = LINE_8, int  shift = 0)
 
void cv::rectangle(InputOutputArray img, Rect rec, const Scalar & color, int  thickness = 1,int  lineType = LINE_8, int  shift = 0)            

(3).circle

void cv::circle(InputOutputArray img, Point center,  int  radius, const Scalar & color, int  thickness = 1, int  lineType = LINE_8, int  shift = 0)

在这里插入图片描述

四、图像处理

(1).颜色空间

1.意义
  • RGB 颜色空间利用三个颜色分量的线性组合来表示颜色,任何颜色都与这三个分量有关,而且这三个分量是高度相关的,所以连续变换颜色时并不直观,想对图像的颜色进行调整需要更改这三个分量才行。

  • 自然环境下获取的图像容易受自然光照、遮挡和阴影等情况的影响,即对亮度比较敏感。而 RGB 颜色空间的三个分量都与亮度密切相关,即只要亮度改变,三个分量都会随之相应地改变,而没有一种更直观的方式来表达。

  • 在图像处理中使用较多的是 HSV 颜色空间,它比 RGB 更接近人们对彩色的感知经验。非常直观地表达颜色的色调、鲜艳程度和明暗程度,方便进行颜色的对比。

H(色调/hue) |

S(饱和度/saturation) |

V(明度/Value) |

在这里插入图片描述

2.cvtColor()
void cv::cvtColor(InputArray src, OutputArray dst, int code, int dstCn=0)
  • src:输入图像,可以是Mat类型的图像或者其他支持的图像数据结构。
  • dst:输出图像,用于存储转换后的图像。
  • code:颜色空间转换的代码,例如CV_BGR2GRAY表示将BGR颜色空间转换为灰度图像。
  • dstCn:输出图像的通道数,如果为0,则自动根据code参数确定通道数。
3.inRange()
void inRange(InputArray src, InputArray lowerb,InputArray upperb, OutputArray dst);
void inRange(image, Scalar(hmin,smin,vmin), Scalar(hmax,smax,vmax), image);
//typedef Vec<double, 4> Scalar;

在这里插入图片描述

4.适应光线

光线较暗 -> 暗色调 ; 增加饱和度S ;减小亮度V

光线较亮 -> 亮色调 ; 减小饱和度S ;增大亮度V

(2).形态操作

1.腐蚀

腐蚀的基本概念就像土壤侵蚀一样,只侵蚀前景对象的边界(总是尽量保持前景为白色)。那它有什么作用呢?内核在图像中滑动(如二维卷积)。只有当内核下的所有像素都为 1 时,原始图像中的像素(1 或 0)才会被视为 1,否则会被侵蚀(变为零)。

C++: void erode(
	InputArray src,
	OutputArray dst,
	InputArray kernel,
	Point anchor=Point(-1,-1),
	int iterations=1,
	int borderType=BORDER_CONSTANT,
	const Scalar& borderValue=morphologyDefaultBorderValue()
 );	
 int g_nStructElementSize = 3; //结构元素(内核矩阵)的尺寸
 
//获取自定义核
Mat element = getStructuringElement(MORPH_RECT,
	Size(2*g_nStructElementSize+1,2*g_nStructElementSize+1),
	Point( g_nStructElementSize, g_nStructElementSize ));
2.膨胀

它与腐蚀正好相反。这里,如果内核下至少有一个像素为“1”,则像素元素为“1”。所以它会增加图像中的白色区域,或者增加前景对象的大小。通常情况下,在去除噪音的情况下,腐蚀后会膨胀。因为,腐蚀消除了白噪声,但它也缩小了我们的对象。所以我们扩大它。由于噪音消失了,它们不会再回来,但我们的目标区域会增加到腐蚀之前的状态。它还可用于连接对象的断开部分。

C++: void dilate(
	InputArray src,
	OutputArray dst,
	InputArray kernel,
	Point anchor=Point(-1,-1),
	int iterations=1,
	int borderType=BORDER_CONSTANT,
	const Scalar& borderValue=morphologyDefaultBorderValue() 
);
3.开/闭运算
  • 开运算(Opening Operation),其实就是先腐蚀后膨胀的过程。开运算可以用来消除小物体、在纤细点处分离物体、平滑较大物体的边界的同时并不明显改变其面积。

  • 先膨胀后腐蚀的过程称为闭运算(Closing Operation),闭运算能够排除小型黑洞(黑色区域)。

C++: void morphologyEx(
InputArray src,
OutputArray dst,
int op,
InputArraykernel,
Pointanchor=Point(-1,-1),
intiterations=1,
intborderType=BORDER_CONSTANT,
constScalar& borderValue=morphologyDefaultBorderValue() 
);

第三个参数,int类型的op,表示形态学运算的类型,可以是如下之一的标识符:

  • MORPH_OPEN – 开运算(Opening operation)
  • MORPH_CLOSE – 闭运算(Closing operation)
  • MORPH_GRADIENT -形态学梯度(Morphological gradient)
  • MORPH_TOPHAT - “顶帽”(“Top hat”)
  • MORPH_BLACKHAT - “黑帽”(“Black hat“)
  • MORPH_ERODE-“腐蚀”
  • MORPH_DILATE-“膨胀”

在这里插入图片描述

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值