机器学习笔记——逻辑斯蒂回归

参数化模型与非参数化

像前面的KNN模型,不需要对f的形式做出假设,在学习中可以得到任意的模型叫非参数化
而需要对参数进行学习的模型叫参数化模型,参数化限制了f的可能的集合,学习难度相对较低

逻辑斯蒂回归

逻辑斯蒂函数
在这里插入图片描述
似然函数
在这里插入图片描述
对数似然函数
在这里插入图片描述
在多分类使用softmax函数
在这里插入图片描述
在这里插入图片描述
重点

ROC曲线

真阳性率 、假阳性率 FPR的变化曲线就叫做ROC曲线
ROC曲线的面积就叫AUC

在这里插入图片描述

import numpy as np
import matplotlib.pyplot as plt
from matplotlib.ticker import MaxNLocator
#%%
# 从源文件中读入数据并处理
lines = np.loadtxt('./data/lr_dataset.csv', delimiter=',', dtype=float)
x_total = lines[:, 0:2]
y_total = lines[:, 2]
print('数据集大小:', len(x_total))
#%%
pos_index=np.where(y_total==1)
neg_index=np.where(y_total==0)
plt.scatter(x_total[pos_index,0],x_total[pos_index,1],marker='o',color='coral',s=10)
plt.scatter(x_total[neg_index,0],x_total[neg_index,1],marker='x',color='blue',s=10)
plt.xlabel('X1')
plt.ylabel('X2')
plt.show()

#%%
np.random.seed(0)
ratio = 0.7
split = int(len(x_total) * ratio)
idx = np.random.permutation(len(x_total))
x_total = x_total[idx]
y_total = y_total[idx]
x_train, y_train = x_total[:split], y_total[:split]
x_test, y_test = x_total[split:], y_total[split:]

#%%
y_test
idx=np.argsort(y_test[::-1])

#%%
y_test
#%%
def acc(y_true,y_pred):
    return np.mean(y_true==y_pred)
def auc(y_true,y_pred):
    idx=np.argsort(y_pred)[::-1]
    y_true=y_true[idx]
    y_pred=y_pred[idx]
    tp=np.cumsum(y_true) #累加
    fp=np.cumsum(1-y_true)
    tpr=tp/tp[-1]
    fpr=fp/fp[-1]
    s=0.0
    tpr = np.concatenate([[0], tpr]) #拼接函数
    fpr = np.concatenate([[0], fpr])
    for i in range(1, len(fpr)):
        s += (fpr[i] - fpr[i - 1]) * tpr[i]
        return s
#%%

def logistic(z):
    return 1/(1+np.exp(-z))
def GD(num_steps,learning_rate,l2_coef):
    theta=np.random.normal(size=(X.shape[1],))
    train_losses=[]
    test_losses = []
    train_acc = []
    test_acc = []
    train_auc = []
    test_auc = []
    for i in range(num_steps):
        pred = logistic(X @ theta)
        grad = -X.T @ (y_train - pred) + l2_coef * theta
        theta -= learning_rate * grad
        train_loss = - y_train.T @ np.log(pred) \
                     - (1 - y_train).T @ np.log(1 - pred) \
                     + l2_coef * np.linalg.norm(theta) ** 2 / 2
        train_losses.append(train_loss / len(X))
        test_pred = logistic(X_test @ theta)
        test_loss = - y_test.T @ np.log(test_pred) \
                    - (1 - y_test).T @ np.log(1 - test_pred)
        test_losses.append(test_loss / len(X_test))
        # 记录各个评价指标,阈值采用0.5
        train_acc.append(acc(y_train, pred >= 0.5))
        test_acc.append(acc(y_test, test_pred >= 0.5))
        train_auc.append(auc(y_train, pred))
        test_auc.append(auc(y_test, test_pred))
    return theta, train_losses, test_losses, \
    train_acc, test_acc, train_auc, test_auc
#%%
# 定义梯度下降迭代的次数,学习率,以及L2正则系数
num_steps = 250
learning_rate = 0.002
l2_coef = 1.0
np.random.seed(0)

# 在x矩阵上拼接1
X = np.concatenate([x_train, np.ones((x_train.shape[0], 1))], axis=1)
X_test = np.concatenate([x_test, np.ones((x_test.shape[0], 1))], axis=1)

theta, train_losses, test_losses, train_acc, test_acc, \
    train_auc, test_auc = GD(num_steps, learning_rate, l2_coef)

# 计算测试集上的预测准确率
y_pred = np.where(logistic(X_test @ theta) >= 0.5, 1, 0)
final_acc = acc(y_test, y_pred)
print('预测准确率:', final_acc)
print('回归系数:', theta)

plt.figure(figsize=(13, 9))
xticks = np.arange(num_steps) + 1


#%%
# 绘制训练曲线
plt.subplot(221)
plt.plot(xticks, train_losses, color='blue', label='train loss')
plt.plot(xticks, test_losses, color='red', ls='--', label='test loss')
plt.gca().xaxis.set_major_locator(MaxNLocator(integer=True))
plt.xlabel('Epochs')
plt.ylabel('Loss')
plt.legend()

#%%
# 绘制准确率
plt.subplot(222)
plt.plot(xticks, train_acc, color='blue', label='train accuracy')
plt.plot(xticks, test_acc, color='red', ls='--', label='test accuracy')
plt.gca().xaxis.set_major_locator(MaxNLocator(integer=True))
plt.xlabel('Epochs')
plt.ylabel('Accuracy')
plt.legend()

  • 2
    点赞
  • 2
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值