大模型论文 | 大语言模型在医药健康领域的应用

标题:ShennongMGS
代码地址:https://github.com/pengsllab/ShennongGPT
发表日期:2024-04-17

摘要:快速发展的大语言模型(LLMs)领域为医疗保健带来了巨大的前景,尤其是在用药指导和药物不良反应预测方面。尽管潜力巨大,但现有的大型语言模型在处理复杂的多药方情况时仍面临挑战,而且经常会遇到数据滞后的问题。为了解决这些局限性,我们介绍了一种基于 LLM 的中文用药指导系统,名为神农 MGS,专门为稳健的用药指导和药物不良反应预测而量身定制。我们的系统将多源异构用药信息转化为知识图谱,并采用两阶段训练策略构建专门的 LLM(ShennongGPT)。该方法可模拟专业药剂师的决策过程,并具备知识自我更新的能力,从而显著提高药物安全性和医疗服务的整体质量。经过医学专家和人工智能专家的严格评估,我们的方法显示出优越性,在性能上优于现有的通用和专用 LLM。


论文地址:https://dl.acm.org/doi/abs/10.1145/3658451


标题:MedChatZH:专用于传统中医问诊的调整型 LLM
代码地址:https://github.com/tyang816/MedChatZH
发表日期:2024-03-13

摘要:生成式大语言模型(LLM)在包括问答(QA)和对话系统在内的各种自然语言处理任务中取得了巨大成功。然而,大多数模型都是在英文数据基础上训练的,在提供中文答案方面缺乏很强的通用性。这一局限性在传统中医问答等专业领域尤为明显,由于缺乏微调和高质量数据集,性能受到影响。为了解决这个问题,我们引入了 MedChatZH,这是一种基于 LLaMA 架构的变换器解码器,专为中文医疗质量评估而优化的对话模型。在精心挑选的医疗指导数据集上进行微调后,我们继续在经过编辑的中医书籍语料库上进行预训练,最终,MedChatZH 在现实世界的医疗对话数据集上的表现优于多个中文对话基线模型。我们的模型、代码和数据集已在 GitHub 上公开发布,以鼓励对传统中医和 LLM 的进一步研究。


论文地址:https://www.sciencedirect.com/science/article/abs/pii/S0010482524003743


如何系统学习掌握AI大模型?

AI大模型作为人工智能领域的重要技术突破,正成为推动各行各业创新和转型的关键力量。抓住AI大模型的风口,掌握AI大模型的知识和技能将变得越来越重要。

学习AI大模型是一个系统的过程,需要从基础开始,逐步深入到更高级的技术。

这里给大家精心整理了一份全面的AI大模型学习资源,包括:AI大模型全套学习路线图(从入门到实战)、精品AI大模型学习书籍手册、视频教程、实战学习、面试题等,资料免费分享

1. 成长路线图&学习规划

要学习一门新的技术,作为新手一定要先学习成长路线图方向不对,努力白费

这里,我们为新手和想要进一步提升的专业人士准备了一份详细的学习成长路线图和规划。可以说是最科学最系统的学习成长路线。
在这里插入图片描述

2. 大模型经典PDF书籍

书籍和学习文档资料是学习大模型过程中必不可少的,我们精选了一系列深入探讨大模型技术的书籍和学习文档,它们由领域内的顶尖专家撰写,内容全面、深入、详尽,为你学习大模型提供坚实的理论基础(书籍含电子版PDF)

在这里插入图片描述

3. 大模型视频教程

对于很多自学或者没有基础的同学来说,书籍这些纯文字类的学习教材会觉得比较晦涩难以理解,因此,我们提供了丰富的大模型视频教程,以动态、形象的方式展示技术概念,帮助你更快、更轻松地掌握核心知识

在这里插入图片描述

4. 2024行业报告

行业分析主要包括对不同行业的现状、趋势、问题、机会等进行系统地调研和评估,以了解哪些行业更适合引入大模型的技术和应用,以及在哪些方面可以发挥大模型的优势。

在这里插入图片描述

5. 大模型项目实战

学以致用 ,当你的理论知识积累到一定程度,就需要通过项目实战,在实际操作中检验和巩固你所学到的知识,同时为你找工作和职业发展打下坚实的基础。

在这里插入图片描述

6. 大模型面试题

面试不仅是技术的较量,更需要充分的准备。

在你已经掌握了大模型技术之后,就需要开始准备面试,我们将提供精心整理的大模型面试题库,涵盖当前面试中可能遇到的各种技术问题,让你在面试中游刃有余。

在这里插入图片描述

全套的AI大模型学习资源已经整理打包,有需要的小伙伴可以微信扫描下方CSDN官方认证二维码,免费领取【保证100%免费

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值