一文搞懂GraphRAG(RAG + 知识图谱)| GraphRAG是什么?如何进行知识图谱的构建?

GraphRAG(Graph-based Retrieval-Augmented Generation)是检索增强生成(RAG)技术的升级版本,通过将知识图谱(Knowledge Graph)与大型语言模型(LLM)结合,解决了传统RAG在处理复杂查询、多跳推理和跨文档语义关联上的局限。其核心目标是通过结构化的知识图谱表示,捕捉数据中实体、关系及全局语义,从而提升LLM对私有或未训练数据的理解与生成能力。

Graph RAG: Improving RAG with Knowledge Graphs

一、GraphRAG

GraphRAG(Graph-based Retrieval-Augmented Generation)是什么?

GraphRAG是一种结合知识图谱与检索增强生成(RAG) 的先进技术,旨在通过结构化知识增强大型语言模型(LLM)的推理能力,解决传统RAG在复杂查询和多跳推理中的局限性。

  • 复杂查询:利用社区聚类(如Leiden算法)生成分层摘要,支持跨文档主题分析(如“近五年AI研究趋势”),实现全局语义理解,解决复杂查询。
  • 多跳推理:通过图谱路径回答需多次关联的问题(如“A事件如何间接导致C结果”。
    img

案例1:复杂查询(社区聚类 + 跨文档主题分析)

将海量AI文献数据划分为高内聚、低耦合的社区,每个社区代表一个研究主题。在社区聚类基础上,分析不同主题间的关联与演化趋势。

  • 输入:近五年AI领域文献数据。

  • 构建文献网络:以文献为节点,引用关系为边,构建加权图。

  • 社区聚类:使用Leiden聚类算法,输出分层社区结构。
    第一层:基础技术(机器学习、深度学习)
    第二层:应用领域(自然语言处理、计算机视觉)
    第三层:细分方向(生成式AI、多模态学习)

  • 生成分层摘要:
    对每个社区提取高频关键词、主题词,生成社区级摘要。
    聚合社区摘要,形成全局分层摘要。

  • 主题关联分析:计算社区间主题相似度(如余弦相似度),构建主题关联图。

  • 趋势预测:基于时间序列分析,识别主题的兴起、衰落与融合。

  • 输出:“近五年AI研究趋势”报告
    2020-2021:深度学习模型优化(如Transformer改进)
    2022-2023:大语言模型(如GPT系列)爆发
    2024:多模态AI与具身智能(Embodied AI)兴起

案例2:多跳推理(图谱路径分析)

通过知识图谱路径,回答“A事件如何间接导致C结果”的复杂问题。

  • 问题:“A事件(2019年Transformer架构提出)如何间接导致C结果(2023年ChatGPT发布)?"

  • 构建知识图谱:
    节点:事件、技术、领域、机构等。
    边:因果关系、引用关系、合作关系等。

  • 图谱路径分析:
    A事件→B事件(2020年Google发布BERT模型,验证Transformer有效性)。
    B事件→C事件(2022年OpenAI基于Transformer训练GPT-3,2023年发布ChatGPT)。

  • 解释生成:将路径转化为自然语言描述,例如:Transformer架构的提出(A)推动了预训练语言模型的发展(B),最终催生了ChatGPT(C)。
    Graph RAG Has Awesome Potential, But Currently Has Serious Flaws | by  Troyusrex | Generative AI

二、知识图谱

如何进行知识图谱(Knowledge Graph)的构建?

知识图谱构建的核心是将非结构化数据转化为语义网络,通过实体识别、关系抽取和图谱融合,最终形成可查询、可推理的知识图谱。这一过程需要结合NLP技术、图数据库和领域知识,适用于智能问答、企业决策支持等场景。

Challenges of Knowledge Graphs. From Strings to Things — An… | by Sebastien  Dery | Medium

1、知识图谱构建核心:将非结构化文本转化为结构化知识网络

知识图谱构建的核心任务是将海量非结构化文本数据(如新闻、文献、网页内容等)转化为结构化的知识图谱。在这一过程中,节点代表实体(如人物、地点、事件、概念等),边则表示实体之间的语义关系(如“糖尿病→胰岛素→副作用”)。通过这种结构化表示,知识图谱能够清晰展现实体间的关联,为后续的语义推理、信息检索和智能问答提供支持。

2、知识图谱构建过程:实体识别、关系抽取和图谱融合

  1. 实体识别:从文本中识别出关键实体(如“糖尿病”“胰岛素”“副作用”),并将其作为知识图谱的节点。

    示例:从“糖尿病患者使用胰岛素可能引发低血糖”中抽取实体“糖尿病”“胰岛素”“低血糖”。

  2. 关系抽取:确定实体之间的语义关系(如“治疗”“引发”“属于”等),并将其作为边连接相关节点。

    示例:根据上述文本,构建关系“糖尿病→治疗→胰岛素”“胰岛素→引发→低血糖”。

  3. 图谱融合:合并来自不同文本的重复实体或关系,确保图谱的一致性。

    示例:若另一文本提到“胰岛素的副作用包括低血糖”,则将其与现有关系融合,形成更完整的图谱。

GraphRAG: Design Patterns, Challenges, Recommendations

三、知识图谱典型案例:构建糖尿病知识图谱

  1. 数据来源:医学文献、百科词条、患者论坛。
  2. 实体:糖尿病、胰岛素、低血糖、血糖监测、饮食控制。
  3. 关系:糖尿病→治疗→胰岛素,胰岛素→引发→低血糖,糖尿病→管理→血糖监测。

通过这种结构化表示,知识图谱不仅能够回答“糖尿病的常见治疗方法是什么”这类直接问题,还能支持复杂推理(如“哪些因素可能影响糖尿病患者的血糖水平?”),从而提升智能系统的语义理解能力。

What is a Knowledge Graph | Stardog


如何系统学习掌握AI大模型?

AI大模型作为人工智能领域的重要技术突破,正成为推动各行各业创新和转型的关键力量。抓住AI大模型的风口,掌握AI大模型的知识和技能将变得越来越重要。

学习AI大模型是一个系统的过程,需要从基础开始,逐步深入到更高级的技术。

这里给大家精心整理了一份全面的AI大模型学习资源,包括:AI大模型全套学习路线图(从入门到实战)、精品AI大模型学习书籍手册、视频教程、实战学习、面试题等,资料免费分享

1. 成长路线图&学习规划

要学习一门新的技术,作为新手一定要先学习成长路线图方向不对,努力白费

这里,我们为新手和想要进一步提升的专业人士准备了一份详细的学习成长路线图和规划。可以说是最科学最系统的学习成长路线。

在这里插入图片描述

2. 大模型经典PDF书籍

书籍和学习文档资料是学习大模型过程中必不可少的,我们精选了一系列深入探讨大模型技术的书籍和学习文档,它们由领域内的顶尖专家撰写,内容全面、深入、详尽,为你学习大模型提供坚实的理论基础(书籍含电子版PDF)

在这里插入图片描述

3. 大模型视频教程

对于很多自学或者没有基础的同学来说,书籍这些纯文字类的学习教材会觉得比较晦涩难以理解,因此,我们提供了丰富的大模型视频教程,以动态、形象的方式展示技术概念,帮助你更快、更轻松地掌握核心知识

在这里插入图片描述

4. 2024行业报告

行业分析主要包括对不同行业的现状、趋势、问题、机会等进行系统地调研和评估,以了解哪些行业更适合引入大模型的技术和应用,以及在哪些方面可以发挥大模型的优势。

在这里插入图片描述

5. 大模型项目实战

学以致用 ,当你的理论知识积累到一定程度,就需要通过项目实战,在实际操作中检验和巩固你所学到的知识,同时为你找工作和职业发展打下坚实的基础。

在这里插入图片描述

6. 大模型面试题

面试不仅是技术的较量,更需要充分的准备。

在你已经掌握了大模型技术之后,就需要开始准备面试,我们将提供精心整理的大模型面试题库,涵盖当前面试中可能遇到的各种技术问题,让你在面试中游刃有余。

在这里插入图片描述

全套的AI大模型学习资源已经整理打包,有需要的小伙伴可以微信扫描下方CSDN官方认证二维码,免费领取【保证100%免费

### 关于RAG检索增强生成、知识图谱和大型语言模型(LLM)的代码实现 #### 背景介绍 RAG(Retrieval-Augmented Generation,检索增强生成)是一种结合了检索模块和生成模块的方法,能够有效利用外部知识库来提升生成质量。通过引入知识图谱作为外部知识源,可以进一步提高系统的语义理解和推理能力[^2]。 以下是基于Hugging Face Transformers和Haystack框架的一个简单示例,展示如何将RAG知识图谱结合起来应用于实际场景: --- #### 实现步骤概述 1. **加载预训练的语言模型** 使用Hugging Face Transformers中的`T5`或`BART`等模型作为基础生成器。 2. **集成检索模块** 利用Haystack框架搭建一个文档存储和检索系统,该系统可以从知识图谱中提取结构化数据并将其转化为自然语言形式供模型使用。 3. **融合生成与检索结果** 将检索到的相关信息输入给生成模型,从而让其具备更强的事实依据支持下的文本生产能力。 --- #### 示例代码 下面是一个简单的Python脚本,演示如何设置这样的环境以及执行基本操作: ```python from transformers import pipeline, TFAutoModelForSeq2SeqLM, AutoTokenizer from haystack.document_stores import InMemoryDocumentStore from haystack.nodes import BM25Retriever from haystack.pipelines import ExtractiveQAPipeline # 初始化 Haystack 文档存储 document_store = InMemoryDocumentStore() document_store.write_documents([ {"content": "Graph RAG combines the power of knowledge graphs with retrieval-augmented generation."}, {"content": "Knowledge graphs provide structured data that can be used to enhance model understanding."} ]) # 设置检索器 retriever = BM25Retriever(document_store=document_store) # 加载生成模型 (这里以 T5 为例) model_name = "t5-small" generator_model = TFAutoModelForSeq2SeqLM.from_pretrained(model_name) tokenizer = AutoTokenizer.from_pretrained(model_name) def generate_with_rag(query): # 检索相关文档 retrieved_docs = retriever.retrieve(query=query, top_k=2) context = "\n".join([doc.content for doc in retrieved_docs]) # 构建提示词 input_text = f"question: {query} context: {context}" inputs = tokenizer(input_text, return_tensors="tf", truncation=True, padding=True) # 进行生成 outputs = generator_model.generate(inputs["input_ids"], max_length=50) answer = tokenizer.decode(outputs[0], skip_special_tokens=True) return answer # 测试函数 if __name__ == "__main__": query = "What is Graph RAG?" result = generate_with_rag(query) print(f"Query: {query}\nAnswer: {result}") ``` 上述代码展示了如何创建一个小型的知识库,并通过BM25算法从中获取最相关的条目;之后这些条目被传递至T5模型来进行最终的回答生成过程[^3]。 --- #### 技术细节说明 - **知识图谱的作用**:在更复杂的部署环境中,可以通过像Neo4j这样的图形数据库管理大规模的关系型数据集,再经由特定接口转换成适合机器学习处理的形式。 - **性能优化建议**:对于工业级应用来说,可能还需要考虑缓存机制减少重复计算开销等问题。 ---
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值