本地查找重复/相似的图片、视频的图片查重工具

查找各平台,比较了多种图片查重工具。理想的工具应该能查出完全相同或有一定相似度的图片,并兼具识别大量图片时的性能。研究了一下DuplicatePhotoFinder64是如何实现相似图片查找的。

首先需要理解图片的不同描述,以及其信息的作用。

图像的基本属性:像素、分辨率、大小、颜色、位深、色调、饱和度、亮度、色彩通道、图像的层次组成。

感性的理解:

像素、分辨率是不需考虑的,应该缩放到相同尺寸来比较,这样同一图像的大图小图是相似的。

色调、饱和度、亮度等,由于传输中色彩失真,或调制了滤镜,这些色彩相关的信息也不应对图片是否相似起决定作用,而只能判别风格,他们正常也应该是相似的。

最体现图片内容特征的,一个最简单使用得到的,应该是相对的灰度分布信息。再深入一点,可以提取图片中的轮廓等信息,对其中的曲直等特征进行归类。

作者使用的是基于灰度离散度并大量简化了包含的信息的方法。应该对同一图像不同尺寸、图案整体一致且细节差异不多、快速连拍的一系列图像的相邻图像有比较好的鉴别效果。对于整图/局部图、同一人物在场景中不同位置、滤镜对明暗处理差异较大的图片鉴别能力较差。


其处理方式:

首先把图像缩放到8x8的尺寸,共64像素

处理为64级灰度图片(忽略颜色信息)

计算灰度平均值

每个像素灰度与平均值比较,不低于平均值的记为1,低于平均值为0,得到64位二进制的灰度特征信息(指纹)

比较两图片在这64位中有多少位差异,位数越小,差异越小,相似度越高。

如果考虑比较更细致而牺牲些性能,可增加尺寸/增加进制。

思考:

对于图片缩放这一步,应该用恰当的抽值插值方法,不能简单的取某行某列像素值。

对于整体/局部式图像,如何基于矢量特征找相似。

还有哪些其他不同原理的图片相似度判别方式?比如自动化测试工具airtest怎么从整图识别的局部图像。

预处理:读取图片 第一步,缩小尺寸。 将图片缩小到8x8的尺寸,总共64个像素。这一步的作用是去除图片的细节,只保留结构、明暗等基本信息,摒弃不同尺寸、比例带来的图片差异。 第二步,简化色彩。 将缩小后的图片,转为64级灰度。也就是说,所有像素点总共只有64种颜色。 第三步,计算平均值。 计算所有64个像素的灰度平均值。 第四步,比较像素的灰度。 将每个像素的灰度,与平均值进行比较。大于或等于平均值,记为1;小于平均值,记为0。 第五步,计算哈希值。 将上一步的比较结果,组合在一起,就构成了一个64位的整数,这就是这张图片的指纹。组合的次序并不重要,只要保证所有图片都采用同样次序就行了。 得到指纹以后,就可以对比不同的图片,看看64位中有多少位是不一样的。在理论上,这等同于计算"汉明距离"(Hammingdistance)。如果不相同的数据位不超过5,就说明两张图片相似;如果大于10,就说明这是两张不同的图片。 你可以将几张图片放在一起,也计算出他们的汉明距离对比,就可以看看两张图片是否相似。 这种算法的优点是简单快速,不受图片大小缩放的影响,缺点是图片的内容不能变更。如果在图片上加几个文字,它就认不出来了。所以,它的最佳用途是根据缩略图,找出原图。 实际应用中,往往采用更强大的pHash算法SIFT算法,它们能够识别图片的变形。只要变形程度不超过25%,它们就能匹配原图。这些算法虽然更复杂,但是原理与上面的简便算法是一样的,就是先将图片转化成Hash字符串,然后再进行比较。 以上内容大部分直接从阮一峰的网站上复制过来,想看原著的童鞋可以去在最上面的链接点击进去看。
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值