线性代数:第一章 向量空间

本文是马同学高等数学的学习笔记!

第一章 向量空间

1.1 向量

1.1.1 物理中的向量

向量是一个具有大小和方向的量。
向量的表示:将有向线段的起点和终点分别表示为字母A、B。则向量表示为 A B ⃗ \vec{AB} AB
向量的相等:只要方向、大小一致就是相同的向量。

1.1.2 向量与复数

根据定义,每个复数都对应复平面上的一个点。如果将向量的起点固定在原点,则复平面上每个点也对应唯一的一个向量。
[外链图片转存失败(img-91KK1s0m-1563157537967)(1.png)]

如果希望使用复数来解释物理中的向量,那么复数就应当满足:

  • 兼容实数,扩展数系。
  • 在二维、三维空间中符合物理中的运算法则。
复数向量
目的扩展实数描述空间
运算与实数兼容只有加减、没有乘除
维度只有二维从0到无穷维

1.1.3 数学中的向量

向量的形式化定义:
n个有序的数 a 1 , a 2 , ⋯   , a n a_1, a_2, \cdots, a_n a1,a2,,an所组成的数组称为n维向量,这n个数称为该向量的n个分量,第i个数 a i a_i ai称为第i个分量。n维向量可以写成一行,也可以写成一列。分别称为行向量和列向量:

  • n维列向量:
    ( a 1 a 2 ⋯ a n ) \left(\begin{matrix}a_1 \\a_2 \\ \cdots \\a_n\end{matrix}\right) a1a2an
  • n维行向量:
    ( a 1 , a 2 ⋯ a n ) \left(\begin{matrix}a_1, a_2 \cdots a_n \end{matrix}\right) (a1,a2an)

1.1.4 大小和方向

  • 平行:方向相同或相反的两个向量称为平行,或者说两向量的夹角为0。
  • 正交:互相垂直的两个向量称为正交,或者说两向量的夹角为 π 2 \frac{\pi}{2} 2π
  • 单位向量:长度为1的向量称为单位向量。

零向量: 起点和终点为同一个点的向量为零向量,记做 O O O
性质:

  • 长度:0向量的长度为0。
  • 方向:0向量指向任意方向。
  • 夹角:零向量与某一向量的夹角为任意方向。
  • 平行与正交:零向量与任意向量平行、正交。

1.2 向量的加减和数乘

1.2.1 加法

三角形法则:
u + v u + v u+v
u 、 v u、v uv首尾相连,连接 O O O v v v
可以扩展到多个向量相加。

代数定义:

更一般的,对于:
a = ( a 1 a 2 ⋯ a n ) b = ( b 1 b 2 ⋯ b n ) a = \left(\begin{matrix}a_1 \\a_2 \\ \cdots \\a_n\end{matrix}\right) \qquad b = \left(\begin{matrix}b_1 \\b_2 \\ \cdots \\b_n\end{matrix}\right) a=a1a2anb=b1b2bn
它的加法定义为:
a + b = ( a 1 a 2 ⋯ a n ) + ( b 1 b 2 ⋯ b n ) = ( a 1 + b 1 a 2 + b 2 ⋯ a n + b n ) a + b = \left(\begin{matrix}a_1 \\a_2 \\ \cdots \\a_n\end{matrix}\right) + \left(\begin{matrix}b_1 \\b_2 \\ \cdots \\b_n\end{matrix}\right) = \left(\begin{matrix}a_1 + b_1 \\a_2 +b_2 \\ \cdots \\a_n+b_n\end{matrix}\right) a+b=a1a2an+b1b2bn=a1+b1a2+b2an+bn
当然也可以看做是行向量:
a + b = ( a 1 , a 2 ⋯ a n ) + ( b 1 , b 2 ⋯ b n ) = ( a 1 + b 1 , a 2 + b 2 ⋯ a n + b n ) a + b = \left(\begin{matrix}a_1 ,a_2 \cdots a_n\end{matrix}\right) + \left(\begin{matrix}b_1 ,b_2 \cdots b_n\end{matrix}\right) = \left(\begin{matrix}a_1 + b_1 ,a_2 +b_2 \cdots a_n+b_n\end{matrix}\right) a+b=(a1,a2an)+(b1,b2bn)=(a1+b1,a2+b2an+bn)

1.2.2 数乘

数乘的几何意义:

  • ∣ k ∣ \vert k\vert k为缩放比例
  • k &lt; 0 k&lt;0 k<0时, k u ku ku u u u的方向相反
  • k u / / u ku // u ku//u

代数定义:
对于:
a = ( a 1 a 2 ⋯ a n ) a = \left(\begin{matrix}a_1 \\a_2 \\ \cdots \\a_n\end{matrix}\right) a=a1a2an
数乘k是将每个元素都扩大为k倍:
k a = k ( a 1 a 2 ⋯ a n ) = ( k a 1 k a 2 ⋯ k a n ) , k ∈ R ka = k\left(\begin{matrix}a_1 \\a_2 \\ \cdots \\a_n\end{matrix}\right) = \left(\begin{matrix}ka_1 \\ka_2 \\ \cdots \\ka_n\end{matrix}\right), k \in R ka=ka1a2an=ka1ka2kan,kR
当然也可以写成行向量:
k a = k ( a 1 , a 2 ⋯ a n ) = ( k a 1 , k a 2 ⋯ k a n ) , k ∈ R ka = k\left(\begin{matrix}a_1 ,a_2 \cdots a_n\end{matrix}\right) = \left(\begin{matrix}ka_1 ,ka_2 \cdots ka_n\end{matrix}\right), k \in R ka=k(a1,a2an)=(ka1,ka2kan),kR

1.2.3基本运算法则

数乘和加法被称为向量的基本运算,运算后的结果仍然是向量,并且维度也没有发生改变。
符合一下规律:

  • 加法:
    交换律: v + u = u + v v+u = u+v v+u=u+v
    结合律: u + v + w = u + ( v + w ) u+v+w = u + (v+w) u+v+w=u+(v+w)
  • 数乘:
    交换律: k ⋅ u = u ⋅ k k\cdot u = u\cdot k ku=uk
    结合律: k ⋅ m ⋅ u = k ⋅ ( m ⋅ u ) k \cdot m \cdot u = k \cdot (m \cdot u) kmu=k(mu)
    分配律: k ( u + v ) = k u + k v k(u + v) = ku + kv k(u+v)=ku+kv

##1.3 线性表示与线性相关

1.3.1 等比混合

三原色:红绿蓝
黄 = 红 + 绿
白= 红 + 绿 + 蓝

1.3.2 非等比混合

颜料是从白光中减去某些颜色,如黄色颜料的作用是阻止蓝色光线的反射,进而我们看到的是黄色。
Y = ( R + G + B ) − B Y = (R + G + B) - B Y=(R+G+B)B
颜料的三原色:洋红、青、黄

1.3.3 线性组合

R = ( 255 0 0 ) , G = ( 0 255 0 ) , B = ( 0 0 255 ) R = \left(\begin{matrix}255 \\ 0 \\ 0\end{matrix}\right),\quad G = \left(\begin{matrix}0 \\ 255 \\ 0\end{matrix}\right), \quad B = \left(\begin{matrix}0 \\ 0 \\ 255\end{matrix}\right) R=25500,G=02550,B=00255

如此:
Y = R + G = ( 255 0 0 ) + ( 0 255 0 ) = ( 255 255 0 ) Y = R + G = \left(\begin{matrix}255 \\ 0 \\ 0\end{matrix}\right) + \left(\begin{matrix}0 \\ 255 \\ 0\end{matrix}\right) = \left(\begin{matrix}255 \\ 255 \\ 0\end{matrix}\right) Y=R+G=25500+02550=2552550

向量组: 若干同维数的列向量(或者同维数的行向量)所组成的集合,叫做向量组。
比如之前的 R G B RGB RGB放在一个集合中,* { R , G , B } \{R, G, B\} {R,G,B}就是一个向量组。

线性组合: 给定向量组 A A A: a 1 , a 2 ⋯ a m a_1,a_2\cdots a_m a1,a2am和向量 b b b,如果存在一组实数 k 1 , k 2 ⋯ k m k_1, k_2\cdots k_m k1,k2km,使得:
b = k 1 a 1 + k 2 a 2 + ⋯ k m a m b = k_1a_1 + k_2a_2 + \cdots k_ma_m b=k1a1+k2a2+kmam,称向量 b b b能由向量组 A A A线性表示,也可以说向量 b b b是向量组 A A A线性组合


1.3.4 线性相关

R G B RGB RGB称为三原色,意为这三种颜色是最基本的元素,缺一不可,这是因为其中任何一种颜色不可能被另外两种颜色混合出来。称 A = { R , G , B } A = \{R, G, B\} A={R,G,B}线性无关。

线性相关: 给定向量组 A : a 1 , a 2 , ⋯ a m , A:a_1,a_2, \cdots a_m, A:a1,a2,am如果存在不全为0的实数 k 1 , k 2 , ⋯ k m k_1, k_2,\cdots k_m k1,k2,km使得:
k 1 a 1 + k 2 a 2 + ⋯ + k m a m = 0 k_1a_1 + k_2a_2 + \cdots + k_ma_m = 0 k1a1+k2a2++kmam=0,则称向量组 A A A线性相关的,否则称它为线性无关。

1.4 向量空间

1.4.1 空间的两要素

向量空间应该具有的两要素:

  • 包含向量:
    向量组就包含向量:
    V = { v 1 , v 2 , ⋯ &ThinSpace; , v n } V = \{v_1, v_2, \cdots, v_n\} V={v1,v2,,vn}
    并且向量组可以保证内部的向量维数相同
  • 向量的”运动“仍然在空间中:
    指数乘和加法。

向量空间: 对于某向量组 V V V, v 1 , v 2 ∈ V v_1, v_2 \in V v1,v2V,若 v 1 + v 2 ∈ V , k v 1 ∈ V v_1 + v_2 \in V, kv_1 \in V v1+v2V,kv1V,那么 V V V就是向量空间。

1.4.2 特殊的向量空间

  • 所有一维向量构成的集合是一个向量空间,记作 R 1 : R^1: R1:
    R 1 = { ( x ) ∣ x ∈ R } R^1 = \{(x)|x \in R\} R1={(x)xR}
  • 所有二维向量构成的集合是一个向量空间,记作 R 2 : R^2: R2:
    R 2 = { ( x 1 , x 2 ) ∣ x 1 , 2 ∈ R } R^2 = \{(x_1, x_2)|x_{1,2} \in R\} R2={(x1,x2)x1,2R}
  • 更一般地:
    由所有n维向量构成的集合是一个向量空间 R n : R^n: Rn:
    R n = { ( x 1 , x 2 , ⋯ &ThinSpace; , x n ) ∣ n ∈ N , x n ∈ R } R^n = \{(x_1, x_2,\cdots, x_n)| n \in N, x_n \in R\} Rn={(x1,x2,,xn)nN,xnR}
  • 特别地, 仅含有零向量的集合也是一个向量空间,记作 R 0 R^0 R0
    R 0 = 0 R^0 = {0} R0=0

注:三维空间的平面,虽然也是平面,但它的组成元素是三维向量,不是二维向量。

1.4.3 子空间

向量空间并不一定是 R n R^n Rn,也可以是它们的子集。如 R 3 R^3 R3中的一个点、一条直线、一个面。值得注意的是子空间一定要包含零向量.
V称为 R 3 R^3 R3的一个子空间,记作: V ⊂ R 3 V \subset R^3 VR3

1.5 基(上)

1.5.1 张成空间

张成空间: 某向量组 { v 1 , v 2 , ⋯ &ThinSpace; , v p } \{v_1, v_2,\cdots, v_p\} {v1,v2,,vp},其所有线性组合构成的集合称为向量组 { v 1 , v 2 , ⋯ &ThinSpace; , v p } \{v_1,v_2,\cdots, v_p\} {v1,v2,,vp}张成空间,记为 s p a n ( v 1 , v 2 , ⋯ &ThinSpace; , v p ) span(v_1, v_2, \cdots , v_p) span(v1,v2,,vp),即:
s p a n ( v 1 , v 2 , ⋯ &ThinSpace; , v p ) = { k 1 v 1 + k 2 v 2 + ⋯ + k p v p ∣ k 1 , 2 , ⋯ &ThinSpace; , p ∈ R } span(v_1, v_2, \cdots, v_p) = \{k_1v_1 + k_2v_2+\cdots + k_pv_p| k_{1,2,\cdots, p} \in R\} span(v1,v2,,vp)={k1v1+k2v2++kpvpk1,2,,pR}
也称 s p a n ( v 1 , v 2 , ⋯ &ThinSpace; , v p ) span(v_1, v_2, \cdots, v_p) span(v1,v2,,vp)为向量组 { v 1 , v 2 , ⋯ &ThinSpace; , v p } \{v_1,v_2,\cdots, v_p\} {v1,v2,,vp}张成

1.5.2 等价向量组

等价向量组: 设有两个向量组 A : a 1 , a 2 , ⋯ a m A: a_1, a_2, \cdots a_m A:a1,a2,am B : b 1 , b 2 , ⋯ &ThinSpace; , b l B: b_1, b_2, \cdots, b_l B:b1,b2,,bl
若B中的每个向量都能由向量组 A A A线性表示,则称向量组 B B B能由向量组 A A A线性表示。
若向量组 A A A与向量组 B B B能相互表示,则称这两个向量组等价,也可以说 A A A B B B等价向量组

1.5.3 等价空间

命题:设有两个向量组 A : a 1 , a 2 , ⋯ a n A: a_1, a_2, \cdots a_n A:a1,a2,an B : b 1 , b 2 , ⋯ &ThinSpace; , b m B: b_1, b_2, \cdots, b_m B:b1,b2,,bm
则: A 和 B 等 价 ⇔ s p a n ( A ) = s p a n ( B ) A 和 B 等价 \Leftrightarrow span(A) = span(B) ABspan(A)=span(B)

1.5.4 极大线性无关组

极大线性无关组 :设有向量组 A A A,若能在 A A A中选出 r r r个向量 a 1 , a 2 , ⋯ &ThinSpace; , a r a_1,a_2, \cdots, a_r a1,a2,,ar满足:

  • 向量组 A 0 = { a 1 , a 2 , ⋯ &ThinSpace; , a r } A_0 = \{a_1, a_2, \cdots, a_r\} A0={a1,a2,,ar} 线性无关
  • 向量组 A A A中任意 r + 1 r+1 r+1个向量(如果 A A A中有 r + 1 r+1 r+1个向量的话)都线性相关
    那么称向量组 A 0 A_0 A0是向量组 A A A的一个极大线性无关组

1.6 基(下)

1.6.1 基的定义

: V V V为向量空间,如果其中某向量组:
A = { a 1 , a 2 , ⋯ &ThinSpace; , a r } A = \{a_1, a_2, \cdots, a_r\} A={a1,a2,,ar} V V V的极大线性无关组,那么向量组 A A A被称为向量空间 V V V的一个

1.6.2 秩与维度

:假设向量组 A A A的极大无关组为:
A 0 = { a 1 , a 2 , ⋯ &ThinSpace; , a r } A_0 = \{a_1, a_2, \cdots, a_r\} A0={a1,a2,,ar}
A 0 A_0 A0的向量个数 r r r称为向量组 A A A,记作 r a n k ( A ) rank(A) rank(A)或者 r ( A ) r(A) r(A)
只含零向量的向量组没有极大无关组,规定它的秩为0。

向量空间的维数 : 假设向量空间 V V V的基为:
A = { a 1 , a 2 , ⋯ &ThinSpace; , a r } A = \{a_1, a_2, \cdots, a_r\} A={a1,a2,,ar}
A A A的秩 r r r称为向量空间的维数,称 V V V r r r维向量空间。
如果向量空间没有基,那么它的维数为0,0维向量空间只含一个零向量。

1.6.3 基与坐标

坐标 :在向量空间 V V V中取一个基 a 1 , a 2 , ⋯ &ThinSpace; , a r a_1, a_2, \cdots, a_r a1,a2,,ar,那么 V V V 中某向量 x x x可以唯一表示为:
x = k 1 a 1 + k 2 a 2 + ⋯ + k r a r x = k_1a_1 + k_2a_2 + \cdots + k_ra_r x=k1a1+k2a2++krar
k 1 , k 2 , ⋯ &ThinSpace; , k r k_1, k_2, \cdots, k_r k1,k2,,kr称为向量 x x x在基 a 1 , a 2 , ⋯ &ThinSpace; , a r a_1, a_2, \cdots, a_r a1,a2,,ar 下的坐标
x x x在此基下可以表示为:
x = ( k 1 k 2 ⋮ k r ) a x = \left(\begin{matrix}k_1 \\ k_2 \\ \vdots \\ k_r\end{matrix}\right)_a x=k1k2kra
其中右下角的下标指明坐标所在的基。

所有的 R n R^n Rn都有自然基,在自然基下不需要加下标。

1.7 点积

1.7.1 欧几里得空间

欧几里得空间 : 向量空间 + 点积运算

1.7.2 角度

向量的点积
a ⋅ b = ( a 1 , a 2 ) ⋅ ( b 1 , b 2 ) = a 1 b 1 + a 2 b 2 a \cdot b = (a_1, a_2) \cdot (b_1, b_2) = a_1b_1 + a_2b_2 ab=(a1,a2)(b1,b2)=a1b1+a2b2
则夹角的余弦值可以使用向量的运算来表示:
cos ⁡ θ = a 1 b 1 + a 2 b 2 ∥ a ∥ ∥ b ∥ \cos\theta = \frac{a_1b_1 + a_2b_2}{\Vert a\Vert \Vert b \Vert} cosθ=aba1b1+a2b2

1.7.3 长度

∥ a ∥ = a ⋅ a \Vert a\Vert = \sqrt{a \cdot a} a=aa

1.7.4 点积的定义

点积(内积) :在向量空间 R n R^n Rn中,自然基下,向量 x = ( x 1 , ⋯ &ThinSpace; , x n ) x = (x_1, \cdots, x_n) x=(x1,,xn) y = ( y 1 , ⋯ &ThinSpace; , y n ) y = (y_1, \cdots, y_n) y=(y1,,yn)点积(dot product),或称内积(inner product),定义为:
x ⋅ y = x 1 y 1 + ⋅ + x n y n = ∑ i = 1 n x i y i x \cdot y = x_1y_1 + \cdot + x_ny_n = \sum\limits_{i = 1}^{n}x_iy_i xy=x1y1++xnyn=i=1nxiyi

1.7.5 点积的性质

  • 交换律:
    a ⋅ b = b ⋅ a a \cdot b = b \cdot a ab=ba
  • 数乘结合律:
    ( k a ) ⋅ b = k ( b ⋅ a ) (ka)\cdot b = k(b \cdot a) (ka)b=k(ba)
  • 分配律:
    ( a + b ) ⋅ c = a ⋅ c + b ⋅ c (a + b) \cdot c = a \cdot c + b \cdot c (a+b)c=ac+bc

1.7.6 欧式距离与余弦距离

欧式距离 : ∥ a − b ∥ = ( a − b ) ⋅ ( a − b ) \Vert a - b \Vert = \sqrt{(a - b)\cdot (a - b)} ab=(ab)(ab)

余弦距离 cos ⁡ θ = a ⋅ b ∥ a ∥ ∥ b ∥ \cos\theta = \frac{a \cdot b}{\Vert a \Vert \Vert b \Vert} cosθ=abab

余弦距离解释了事物的相关性,在data mining由很多应用。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值