1.为什么要用树状?
给定一个数组a[n]
现在有两个任务
1.对其进行单点修改,比如修改a[2]这个值,只需要o(1)的时间
2.进行n次查询,求a[1]+a[2]+…+a[n],时间为o(n*n)很明显要被正义打击~~~~(>_<)~~~~
下面就要讲我们数组数组的神奇了O(∩_∩)O
2.什么是树状数组
给一个网图
我们的数组储存的是单个点或是一个区间的值。那是怎么储存的呢?
举几个栗子
d[8]=1000(二进制)=a[1]+…+a[8]
d[4]=100(二进制)=a[1]+…a[4]
d[3]=11(二进制)=a[3]
d[6]=110(二进制)=a[5]+a[6]
i.聪明的大佬们可以看出玄机了么?下面我们进行询问就非常简单了 ^ _ ^
求a[1]+…+a[5]=d[4]+d[5]
求a[1]+…+a[6]=d[4]+d[6]
所以我们可以总结出公式:
比如求5的前缀和101=101+100
比如求6的前缀和110=110+100
比如求7的前缀和111=111+110+100
看到没就是该点的二进制把含1的位绿了然后丢掉的所有情况的和
ii.那么修改呢?
我们就相反就行了,把1找回了就可以了
比如修改5这个点101=101
比如修改6这个点110=110-101
比如修改7这个点111=111
比如修改8这个点1000=1000-111-110-100
iii.最后怎么实现找1呢?
用到我们的lowbit数组.这个作用就是找到二进制中末尾1的位置
用法就是x&(-x)
栗子:
x=10100
-x=01011+1=01100
x&(-x)=10100&01100=00100
3.给出模板代码
int d[100005],n;
求1的位置
int lowbit(int x)
{return x&(-x);}
//查询
int query(int x)
{int res=0;
while(x)
{
res+=d[x];
x-=lowbit(x);
}
//修改
int add(int x,int d)
{
while(x<=d)
{
d[x]+=n;
x+=lowbit(x);
}
}