# Leetcode——486. Predict the Winner

9 篇文章 0 订阅

https://leetcode.com/problems/predict-the-winner/?tab=Description

### Description

Given an array of scores that are non-negative integers. Player 1 picks one of the numbers from either end of the array followed by the player 2 and then player 1 and so on. Each time a player picks a number, that number will not be available for the next player. This continues until all the scores have been chosen. The player with the maximum score wins.

Given an array of scores, predict whether player 1 is the winner. You can assume each player plays to maximize his score.

Example 1:
Input: [1, 5, 2]
Output: False
Explanation: Initially, player 1 can choose between 1 and 2.
If he chooses 2 (or 1), then player 2 can choose from 1 (or 2) and 5. If player 2 chooses 5, then player 1 will be left with 1 (or 2).
So, final score of player 1 is 1 + 2 = 3, and player 2 is 5.
Hence, player 1 will never be the winner and you need to return False.
Example 2:
Input: [1, 5, 233, 7]
Output: True
Explanation: Player 1 first chooses 1. Then player 2 have to choose between 5 and 7. No matter which number player 2 choose, player 1 can choose 233.
Finally, player 1 has more score (234) than player 2 (12), so you need to return True representing player1 can win.

Note:
1 <= length of the array <= 20.
Any scores in the given array are non-negative integers and will not exceed 10,000,000.
If the scores of both players are equal, then player 1 is still the winner.

### AC 代码

class Solution {
public:
bool PredictTheWinner(vector<int>& nums) {
int n=nums.size();
vector<vector<int>> dp(n,vector<int>(n));
vector<int> sum(n);
for(int i=0;i<n;i++)
dp[i][i]=nums[i];
sum[0]=nums[0];
for(int i=0;i<n-1;i++)
sum[i+1]=sum[i]+nums[i+1];//累积分布和
for(int i=1;i<n;i++)
for(int j=0;i+j<n;j++)
dp[j][i+j]=max(sum[i+j]-sum[j]+nums[j]-dp[j+1][i+j],sum[i+j]-sum[j]+nums[j]-dp[j][i+j-1]);
return 2*dp[0][n-1]>=sum[n-1];
}
};

### 分析

dp[i][j]表示原数组中从i到j的这么多数中，按照游戏规则，某个玩家所能获得的最大分数。

dp[i][j]=max(sum[i+1][j]-dp[i+1][j]+nums[i], sum[i][j-1]-dp[i][j-1]+nums[j]) 。

dp[i][j]=max(sum[i][j]-dp[i+1][j], sum[i][j]-dp[i][j-1]) 。

dp[0][1],dp[1,2],dp[2,3]…dp[n-2][n-1]

for(int i=1;i<n;i++)
for(int j=0;i+j<n;j++)
dp[j][i+j]=max(sum[i+j]-sum[j]+nums[j]-dp[j+1][i+j],sum[i+j]-sum[j]+nums[j]-dp[j][i+j-1]);

• 3
点赞
• 2
收藏
觉得还不错? 一键收藏
• 0
评论
12-23 733
09-02 1309
05-24 594
02-16 2358
12-12 430
04-13 1140
01-24 2867
02-18 955

### “相关推荐”对你有帮助么？

• 非常没帮助
• 没帮助
• 一般
• 有帮助
• 非常有帮助

1.余额是钱包充值的虚拟货币，按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载，可以购买VIP、付费专栏及课程。