通信中常见的概率分布

几个重要的分布

Gaussian Distribution

  1. standard Gaussian distribution
    X ∼ N ( 0 , 1 ) X\sim \mathcal N(0,1) XN(0,1)

    f ( x ) = 1 2 π e − x 2 2 f(x)=\dfrac{1}{\sqrt{2\pi}}e^{-\dfrac{x^2}{2}} f(x)=2π 1e2x2

    Φ ( x ) = 1 2 π ∫ − ∞ x e − t 2 2 d t ​ \Phi(x)=\dfrac{1}{\sqrt{2\pi}}\int_{-\infty}^{x}e^{-\dfrac{t^2}{2}}dt​ Φ(x)=2π 1xe2t2dt

  2. general Gaussian distribution
    X ∼ N ( μ , σ 2 ) X\sim \mathcal N(\mu,\sigma^2) XN(μ,σ2)

    f ( x ) = 1 2 π σ e − ( x − μ ) 2 2 σ 2 f(x)=\dfrac{1}{\sqrt{2\pi}\sigma}e^{-\dfrac{(x-\mu)^2}{2\sigma^2}} f(x)=2π σ1e2σ2(xμ)2

    F ( x ) = 1 2 π σ ∫ − ∞ x e − ( t − μ ) 2 2 σ 2 d t F(x)=\dfrac{1}{\sqrt{2\pi}\sigma}\int_{-\infty}^{x}e^{-\dfrac{(t-\mu)^2}{2\sigma^2}}dt F(x)=2π σ1xe2σ2(tμ)2dt

  3. several functions related to Gaussian distribution

    Q Q Q函数定义为标准正态分布的右尾函数:
    Q ( x ) = 1 2 π ∫ x ∞ e − t 2 2 d t = 1 − Φ ( x ) Q(x)=\frac{1}{\sqrt{2\pi}}\int_x^\infty e^{-\tfrac{t^2}{2}}dt = 1-\Phi(x) Q(x)=2π 1xe2t2dt=1Φ(x)
    误差函数 e r f ( x ) erf(x) erf(x) 的物理意义是服从均值为 0 0 0, 方差为 1 2 \frac{1}{2} 21正态分布的随机变量 Y Y Y落在区间 ( − x , x ) (-x, x) (x,x)的概率:
    e r f ( x ) = 2 π ∫ 0 x e t 2 d t erf(x)=\frac{2}{\sqrt{\pi}}\int_0^xe^{t^2}dt erf(x)=π 20xet2dt
    互补误差函数 e r f c ( x ) erfc(x) erfc(x)的物理意义即 Y Y Y落在上述区间外的概率:
    e r f c ( x ) = 2 π ∫ x ∞ e t 2 d t erfc(x)=\frac{2}{\sqrt{\pi}}\int_x^{\infty}e^{t^2}dt erfc(x)=π 2xet2dt
    显然:
    e r f c ( x ) = 1 − e r f c ( x ) erfc(x)=1-erfc(x) erfc(x)=1erfc(x)

    Q ( x ) = 1 2 e r f c ( x 2 ) Q(x) = \frac{1}{2}erfc(\frac{x}{\sqrt{2}}) Q(x)=21erfc(2 x)

Chi-Square Distribution

  1. definition

    X 1 , X 2 , . . . , X n X_1, X_2, ..., X_n X1,X2,...,Xn i.i.d. ∼ N ( 0 , 1 ) \sim \mathcal N(0,1) N(0,1),令 X = ∑ i = 1 n X i 2 X=\sum_{i=1}^nX_i^2 X=i=1nXi2,则称 X X X服从自由度为 n n nChi-Square distribution χ 2 ( n ) \chi^2(n) χ2(n)

  2. probability density function
    f n ( x ) = ( 1 / 2 ) n / 2 Γ ( n / 2 ) x n / 2 − 1 e − x / 2 f_n(x)=\dfrac{(1/2)^{n/2}}{\Gamma(n/2)}x^{n/2-1}e^{-x/2} fn(x)=Γ(n/2)(1/2)n/2xn/21ex/2
    上式中 k k k表示自由度, Γ ( ⋅ ) \Gamma(·) Γ()函数是阶乘函数的推广, Γ ( n ) = ( n − 1 ) ! \Gamma(n)=(n-1)! Γ(n)=(n1)。当 n = 2 n=2 n=2
    f ( x ) = 1 2 e − x / 2 f(x)=\frac{1}{2}e^{-x/2} f(x)=21ex/2
    i.e. Chi-Square distribution 退化为均值为2的指数分布。

  3. mean = n n n and variance = 2 n 2n 2n

  4. exponential distribution with mean λ \lambda λ and variance λ 2 \lambda^2 λ2 has PDF:
    f ( x ) = 1 λ e − x λ f(x)=\frac{1}{\lambda}e^{-\frac{x}{\lambda}} f(x)=λ1eλx

Rayleigh Distribution

R ∼ R a y l e i g h ( σ ) R\sim \rm{Rayleigh}(\sigma) RRayleigh(σ) if R = X 2 + Y 2 R=\sqrt{X^2+Y^2} R=X2+Y2 ,where X ∼ N ( 0 , σ 2 ) X\sim N(0, \sigma^2) XN(0,σ2) and Y ∼ N ( 0 , σ 2 ) Y\sim N(0, \sigma^2) YN(0,σ2) are independent normal random variables.
f ( r ) = r σ 2 e − r 2 2 σ 2 f(r)=\frac{r}{\sigma^2}e^{-\frac{r^2}{2\sigma^2}} f(r)=σ2re2σ2r2

  • mean and variance are proportional to σ \sigma σ and σ 2 \sigma^2 σ2 respectively.

One example where the Rayleigh distribution naturally arises is when wind velocity is analyzed in two dimensions. Assuming that each component is uncorrelated, normally distributed with equal variance, and zero mean, then the overall wind speed (vector magnitude) will be characterized by a Rayleigh distribution.

A second example of the distribution arises in the case of random complex numbers whose real and imaginary components are independently and identically distributed Gaussian with equal variance and zero mean. In that case, the absolute value of the complex number is Rayleigh-distributed.

The Chi-Square distribution with n = 2 n = 2 n=2 is equivalent to the Rayleigh Distribution with σ = 1 \sigma = 1 σ=1. I.e., if R ∼ R a y l e i g h ( 1 ) {R\sim \mathrm {Rayleigh} (1)} RRayleigh(1), then R 2 ∼ χ 2 ( 2 ) R^2\sim \chi^2(2) R2χ2(2). I have mentioned above that Chi-Square distribution with n = 2 n=2 n=2 is the same as exponential distribution with mean 2, so there must be a relationship between Rayleigh distribution and exponential distribution:
X ∼ E ( λ ) X λ / 2 ∼ E ( 2 ) X λ / 2 ∼ χ 2 ( 2 ) X λ / 2 ∼ R a y l e i g h ( 1 ) X ∼ R a y l e i g h ( λ / 2 ) X\sim E(\lambda)\\ \frac{X}{\lambda/2}\sim E(2)\\ \frac{X}{\lambda/2}\sim \chi^2(2)\\ \sqrt{\frac{X}{\lambda/2}}\sim \rm{Rayleigh}(1)\\ \sqrt{X}\sim \rm{Rayleigh}(\sqrt{\lambda/2}) XE(λ)λ/2XE(2)λ/2Xχ2(2)λ/2X Rayleigh(1)X Rayleigh(λ/2 )

Consider fading coefficient h ∼ C N ( 0 , 1 ) h\sim\mathcal{CN}(0, 1) hCN(0,1), we know that ∣ h ∣ |h| h is Rayleigh distributed with parameter σ 2 = 1 2 \sigma^2=\frac{1}{2} σ2=21 (each dimension). So the squared magnitude r = ∣ h ∣ 2 r=|h|^2 r=h2 is exponential distributed with mean 2 σ 2 = 1 2\sigma^2=1 2σ2=1, i.e.
f ( r ) = e − r f(r)=e^{-r} f(r)=er

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值