Saleh-Valenzuela 毫米波信道模型

本文详细介绍了3GPP标准下的空间信道模型(SCM)在均匀平面阵(UPA)配置下的角度域表示。内容涵盖了信号的簇数、径数、信道增益、角度增量和时延增量等关键参数,并提供了接收端和发射端的导引向量计算方法。此外,还特别讨论了在UPA中如何通过方位角和仰角来描述信号的到达和离开角度,以及这些参数如何影响信道表示。最后,给出了UPA下3GPP SCM信道模型的完整角度域表示公式。

3GPP SCM信道的角度域表示

H(t)=∑l=1L∑m=1Mlαl,mar(θl+Δθl,m)atH(φl+Δφl,m)δ(t−τl−Δτl,m) \mathbf{H}(t)=\sum_{l=1}^{L} \sum_{m=1}^{M_{l}} \alpha_{l, m} \mathbf{a}_{r}\left(\theta_{l}+\Delta \theta_{l, m}\right) \mathbf{a}_{t}^{H}\left(\varphi_{l}+\Delta \varphi_{l, m}\right) \delta\left(t-\tau_{l}-\Delta \tau_{l, m}\right) H(t)=l=1Lm=1Mlαl,mar(θl+Δθl,m)atH(φl+Δφl,m)δ(tτlΔτl,m)

其中各参数的物理含义为

参数含义
LLL信号的簇数
MlM_lMllll 簇中的信号径数
αl,m\alpha_{l,m}αl,mlll 簇第 mmm 径的信道增益
θl\theta_lθllll 簇的参考到达角
Δθl,m\Delta \theta_{l,m}Δθl,mlll 簇第 mmm 径信号到达角相对于第 lll 簇的参考到达角的增量
φl\varphi_lφllll 簇的参考离开角
Δφl,m\Delta \varphi_{l,m}Δφl,mlll 簇第 mmm 径信号离开角相对于第 lll 簇的参考离开角的增量
τl\tau_lτllll 簇的参考信号时延
Δτl,m\Delta \tau_{l,m}Δτl,mlll 簇第 mmm 径信号时延相对于第 lll 簇的参考时延的增量

ar\mathbf{a}_{r}ar为接收端(终端)的导引矢量,at\mathbf{a}_{t}at为发射端(基站)的导引矢量,均假设基站端和终端的多天线均为均为线性阵(Uniform Linear Array, ULA)排列。当接收端天线数为NrN_rNr,天线间隔为drd_rdr,信号波长为λ\lambdaλ且到达角为θ\thetaθ时,导引向量
ar(θ)=[1e−j2πdrsin⁡(θ)/λ…e−j2π(Nr−1)drsin⁡(θ)/λ]T \mathbf{a}_{r}(\theta)=\left[\begin{array}{llll} 1 & e^{-j 2 \pi d_{r} \sin (\theta) / \lambda} & \ldots & e^{-j 2 \pi\left(N_{r}-1\right) d_{r} \sin (\theta) / \lambda} \end{array}\right]^{T} ar(θ)=[1ej2πdrsin(θ)/λej2π(Nr1)drsin(θ)/λ]T
当发送端天线数为NtN_tNt,天线间隔为dtd_tdt,信号波长为λ\lambdaλ且离开角为φ\varphiφ时,导引向量
at(φ)=[1e−j2πdtsin⁡(φ)/λ…e−j2π(Nt−1)dtsin⁡(φ)/λ]T \mathbf{a}_{t}(\varphi)=\left[\begin{array}{llll} 1 & e^{-j 2 \pi d_{t} \sin (\varphi) / \lambda} & \ldots & e^{-j 2 \pi\left(N_{t}-1\right) d_{t} \sin (\varphi) / \lambda} \end{array}\right]^{T} at(φ)=[1ej2πdtsin(φ)/λej2π(Nt1)dtsin(φ)/λ]T

SCM信道模型在UPA下的推广

在均匀平面阵(Uniform Planar Array, UPA)设置下,发送端的离开角(AoD)和接收端的到达角(AoA)需要用方位角(azimuth angle)和仰角(elevation angle)同时确定。

对于接收端,假定UPA处于yz-平面,沿y和z方向各有NryN_{ry}NryNrzN_{rz}Nrz个天线,即Nr=Nry×NrzN_r=N_{ry}\times N_{rz}Nr=Nry×Nrz,沿y方向和z方向的天线间隔分别为dryd_{ry}drydrzd_{rz}drz,信号波长为λ\lambdaλ,方位角为θr\theta_rθr,仰角为ϕr\phi_rϕr。则
ar=ary⊗arz(4) \mathbf{a}_r=\mathbf{a}_{ry}\otimes \mathbf{a}_{rz}\tag{4} ar=aryarz(4)

为了明确起见,对方位角和仰角进一步定义如下:

  • 方位角为某条径的信号在xy-平面投影与x轴的夹角,范围为[−π,π)[-\pi, \pi)[π,π)
  • 仰角为某条径的信号与xy-平面的夹角,范围为[−π2,π2)[-\frac{\pi}{2},\frac{\pi}{2})[2π,2π)

由几何关系可知,y方向上,相邻天线上信号的路程差为drycos⁡(ϕr)sin⁡(θr)d_{ry}\cos(\phi_r)\sin(\theta_r)drycos(ϕr)sin(θr)(三余弦定理);z方向上,相邻天线上信号的路程差为drzsin⁡(ϕr)d_{rz}\sin(\phi_r)drzsin(ϕr),所以有
ary(θr,ϕr)=[1e−j2πdrycos⁡(ϕr)sin⁡(θr)/λ…e−j2π(Nry−1)drycos⁡(ϕr)sin⁡(θr)/λ]T \mathbf{a}_{ry}(\theta_r,\phi_r)=\left[\begin{array}{llll} 1 & e^{-j 2 \pi d_{ry}\cos(\phi_r)\sin(\theta_r) / \lambda} & \ldots & e^{-j 2 \pi\left(N_{ry}-1\right) d_{ry}\cos(\phi_r)\sin(\theta_r) / \lambda} \end{array}\right]^{T} ary(θr,ϕr)=[1ej2πdrycos(ϕr)sin(θr)/λej2π(Nry1)drycos(ϕr)sin(θr)/λ]T

arz(θr,ϕr)=[1e−j2πdrzsin⁡(ϕr)/λ…e−j2π(Nrz−1)drzsin⁡(ϕr)/λ]T \mathbf{a}_{rz}(\theta_r,\phi_r)=\left[\begin{array}{llll} 1 & e^{-j 2 \pi d_{rz}\sin(\phi_r) / \lambda} & \ldots & e^{-j 2 \pi\left(N_{rz}-1\right) d_{rz}\sin(\phi_r) / \lambda} \end{array}\right]^{T} arz(θr,ϕr)=[1ej2πdrzsin(ϕr)/λej2π(Nrz1)drzsin(ϕr)/λ]T

于是仿照ULA下的SCM表达式,可以得到在UPA下,3GPP SCM信道的角度域表示如下
H(t)=∑l=1L∑m=1Mlαl,mar(θr,l+Δθr,l,m,ϕr,l+Δϕr,l,m)atH(θt,l+Δθt,l,m,ϕt,l+Δϕt,l,m)δ(t−τl−Δτl,m) \mathbf{H}(t)=\sum_{l=1}^{L} \sum_{m=1}^{M_{l}} \alpha_{l, m} \mathbf{a}_{r}\left(\theta_{r,l}+\Delta \theta_{r,l,m},\phi_{r,l}+\Delta \phi_{r,l,m}\right) \mathbf{a}_{t}^{H}\left(\theta_{t,l}+\Delta \theta_{t,l,m},\phi_{t,l}+\Delta \phi_{t,l,m}\right) \delta\left(t-\tau_{l}-\Delta \tau_{l, m}\right) H(t)=l=1Lm=1Mlαl,mar(θr,l+Δθr,l,m,ϕr,l+Δϕr,l,m)atH(θt,l+Δθt,l,m,ϕt,l+Δϕt,l,m)δ(tτlΔτl,m)
上式中的ar\mathbf{a}_rarat\mathbf{a}_tat按照公式(4)~(6)进行计算,对其中几个角度参数进行说明如下:

  • θr,l\theta_{r,l}θr,l:第lll簇在接收端的参考到达方位角
  • Δθr,l,m\Delta \theta_{r,l,m}Δθr,l,m:第lll簇中第mmm径在接收端相对于参考到达方位角的增量
  • ϕr,l\phi_{r,l}ϕr,l:第lll簇在接收端的参考到达仰角
  • Δϕr,l,m\Delta \phi_{r,l,m}Δϕr,l,m:第lll簇中第mmm径在接收端相对于参考到达仰角的增量

脚标为ttt的对应发射端相对应的离开角,其他参数含义同前面的表格。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值