3GPP SCM信道的角度域表示
H(t)=∑l=1L∑m=1Mlαl,mar(θl+Δθl,m)atH(φl+Δφl,m)δ(t−τl−Δτl,m) \mathbf{H}(t)=\sum_{l=1}^{L} \sum_{m=1}^{M_{l}} \alpha_{l, m} \mathbf{a}_{r}\left(\theta_{l}+\Delta \theta_{l, m}\right) \mathbf{a}_{t}^{H}\left(\varphi_{l}+\Delta \varphi_{l, m}\right) \delta\left(t-\tau_{l}-\Delta \tau_{l, m}\right) H(t)=l=1∑Lm=1∑Mlαl,mar(θl+Δθl,m)atH(φl+Δφl,m)δ(t−τl−Δτl,m)
其中各参数的物理含义为
参数 | 含义 |
---|---|
LLL | 信号的簇数 |
MlM_lMl | 第 lll 簇中的信号径数 |
αl,m\alpha_{l,m}αl,m | 第 lll 簇第 mmm 径的信道增益 |
θl\theta_lθl | 第 lll 簇的参考到达角 |
Δθl,m\Delta \theta_{l,m}Δθl,m | 第 lll 簇第 mmm 径信号到达角相对于第 lll 簇的参考到达角的增量 |
φl\varphi_lφl | 第 lll 簇的参考离开角 |
Δφl,m\Delta \varphi_{l,m}Δφl,m | 第 lll 簇第 mmm 径信号离开角相对于第 lll 簇的参考离开角的增量 |
τl\tau_lτl | 第 lll 簇的参考信号时延 |
Δτl,m\Delta \tau_{l,m}Δτl,m | 第 lll 簇第 mmm 径信号时延相对于第 lll 簇的参考时延的增量 |
ar\mathbf{a}_{r}ar为接收端(终端)的导引矢量,at\mathbf{a}_{t}at为发射端(基站)的导引矢量,均假设基站端和终端的多天线均为均为线性阵(Uniform Linear Array, ULA)排列。当接收端天线数为NrN_rNr,天线间隔为drd_rdr,信号波长为λ\lambdaλ且到达角为θ\thetaθ时,导引向量
ar(θ)=[1e−j2πdrsin(θ)/λ…e−j2π(Nr−1)drsin(θ)/λ]T
\mathbf{a}_{r}(\theta)=\left[\begin{array}{llll}
1 & e^{-j 2 \pi d_{r} \sin (\theta) / \lambda} & \ldots & e^{-j 2 \pi\left(N_{r}-1\right) d_{r} \sin (\theta) / \lambda}
\end{array}\right]^{T}
ar(θ)=[1e−j2πdrsin(θ)/λ…e−j2π(Nr−1)drsin(θ)/λ]T
当发送端天线数为NtN_tNt,天线间隔为dtd_tdt,信号波长为λ\lambdaλ且离开角为φ\varphiφ时,导引向量
at(φ)=[1e−j2πdtsin(φ)/λ…e−j2π(Nt−1)dtsin(φ)/λ]T
\mathbf{a}_{t}(\varphi)=\left[\begin{array}{llll}
1 & e^{-j 2 \pi d_{t} \sin (\varphi) / \lambda} & \ldots & e^{-j 2 \pi\left(N_{t}-1\right) d_{t} \sin (\varphi) / \lambda}
\end{array}\right]^{T}
at(φ)=[1e−j2πdtsin(φ)/λ…e−j2π(Nt−1)dtsin(φ)/λ]T
SCM信道模型在UPA下的推广
在均匀平面阵(Uniform Planar Array, UPA)设置下,发送端的离开角(AoD)和接收端的到达角(AoA)需要用方位角(azimuth angle)和仰角(elevation angle)同时确定。
对于接收端,假定UPA处于yz-平面,沿y和z方向各有NryN_{ry}Nry和NrzN_{rz}Nrz个天线,即Nr=Nry×NrzN_r=N_{ry}\times N_{rz}Nr=Nry×Nrz,沿y方向和z方向的天线间隔分别为dryd_{ry}dry和drzd_{rz}drz,信号波长为λ\lambdaλ,方位角为θr\theta_rθr,仰角为ϕr\phi_rϕr。则
ar=ary⊗arz(4)
\mathbf{a}_r=\mathbf{a}_{ry}\otimes \mathbf{a}_{rz}\tag{4}
ar=ary⊗arz(4)
为了明确起见,对方位角和仰角进一步定义如下:
- 方位角为某条径的信号在xy-平面投影与x轴的夹角,范围为[−π,π)[-\pi, \pi)[−π,π)
- 仰角为某条径的信号与xy-平面的夹角,范围为[−π2,π2)[-\frac{\pi}{2},\frac{\pi}{2})[−2π,2π)
由几何关系可知,y方向上,相邻天线上信号的路程差为drycos(ϕr)sin(θr)d_{ry}\cos(\phi_r)\sin(\theta_r)drycos(ϕr)sin(θr)(三余弦定理);z方向上,相邻天线上信号的路程差为drzsin(ϕr)d_{rz}\sin(\phi_r)drzsin(ϕr),所以有
ary(θr,ϕr)=[1e−j2πdrycos(ϕr)sin(θr)/λ…e−j2π(Nry−1)drycos(ϕr)sin(θr)/λ]T
\mathbf{a}_{ry}(\theta_r,\phi_r)=\left[\begin{array}{llll}
1 & e^{-j 2 \pi d_{ry}\cos(\phi_r)\sin(\theta_r) / \lambda} & \ldots & e^{-j 2 \pi\left(N_{ry}-1\right) d_{ry}\cos(\phi_r)\sin(\theta_r) / \lambda}
\end{array}\right]^{T}
ary(θr,ϕr)=[1e−j2πdrycos(ϕr)sin(θr)/λ…e−j2π(Nry−1)drycos(ϕr)sin(θr)/λ]T
arz(θr,ϕr)=[1e−j2πdrzsin(ϕr)/λ…e−j2π(Nrz−1)drzsin(ϕr)/λ]T \mathbf{a}_{rz}(\theta_r,\phi_r)=\left[\begin{array}{llll} 1 & e^{-j 2 \pi d_{rz}\sin(\phi_r) / \lambda} & \ldots & e^{-j 2 \pi\left(N_{rz}-1\right) d_{rz}\sin(\phi_r) / \lambda} \end{array}\right]^{T} arz(θr,ϕr)=[1e−j2πdrzsin(ϕr)/λ…e−j2π(Nrz−1)drzsin(ϕr)/λ]T
于是仿照ULA下的SCM表达式,可以得到在UPA下,3GPP SCM信道的角度域表示如下
H(t)=∑l=1L∑m=1Mlαl,mar(θr,l+Δθr,l,m,ϕr,l+Δϕr,l,m)atH(θt,l+Δθt,l,m,ϕt,l+Δϕt,l,m)δ(t−τl−Δτl,m)
\mathbf{H}(t)=\sum_{l=1}^{L} \sum_{m=1}^{M_{l}} \alpha_{l, m} \mathbf{a}_{r}\left(\theta_{r,l}+\Delta \theta_{r,l,m},\phi_{r,l}+\Delta \phi_{r,l,m}\right) \mathbf{a}_{t}^{H}\left(\theta_{t,l}+\Delta \theta_{t,l,m},\phi_{t,l}+\Delta \phi_{t,l,m}\right) \delta\left(t-\tau_{l}-\Delta \tau_{l, m}\right)
H(t)=l=1∑Lm=1∑Mlαl,mar(θr,l+Δθr,l,m,ϕr,l+Δϕr,l,m)atH(θt,l+Δθt,l,m,ϕt,l+Δϕt,l,m)δ(t−τl−Δτl,m)
上式中的ar\mathbf{a}_rar和at\mathbf{a}_tat按照公式(4)~(6)进行计算,对其中几个角度参数进行说明如下:
- θr,l\theta_{r,l}θr,l:第lll簇在接收端的参考到达方位角
- Δθr,l,m\Delta \theta_{r,l,m}Δθr,l,m:第lll簇中第mmm径在接收端相对于参考到达方位角的增量
- ϕr,l\phi_{r,l}ϕr,l:第lll簇在接收端的参考到达仰角
- Δϕr,l,m\Delta \phi_{r,l,m}Δϕr,l,m:第lll簇中第mmm径在接收端相对于参考到达仰角的增量
脚标为ttt的对应发射端相对应的离开角,其他参数含义同前面的表格。