domain adaption(DA) 、UDA

本文探讨了无监督领域自适应在迁移学习中的作用,旨在减小源域和目标域之间的特征分歧。传统的领域自适应方法通常尝试整体对齐两个域,而本文则提出在类别和样本粒度上进行更精细的分歧减小,以提升目标域模型的性能,特别是在语义分割任务中的表现。

在阅读 Self-supervised Augmentation Consistency for Adapting Semantic Segmentation 时,突然发现不太清楚无监督领域自适应

领域自适应

  • 迁移学习中的一种代表性方法,利用源域的丰富样本提升目标域模型的性能。问题:他们的分布不同。不同阶段的方法不同[1]

无监督领域自适应

  • 领域自适应的关键是如何减小source和target的特征的分歧。现有的方法直接align source和target的整体分布,忽略了细粒度的domain gap。本文提出在类别和样本的粒度上减小领域的分歧。[2]

Reference

[1] https://blog.csdn.net/u013841196/article/details/80956828
[2] https://zhuanlan.zhihu.com/p/88814945

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值