Object detection with location-aware deformable convolution and backward attention filtering

CVPR19

动机:对multi-scale目标检测来说, context information和high-resolution的特征是很重要的。但是context information一般是不规则分布的,高分辨率特征也往往包含一些干扰的low-level信息。 为了解决这两个问题, 文章提出两个模块: location-aware deformable convolution 和 backward attention filtering。 前者提取不规则分布的context 信息,相对于一般的deformable convolution不同的是, offset estimation是通过在每个采样点用各自不同的卷积层来得到的, 这样每个点有各自不同的感受野, offset估计的更好; backward attention filtering则是用网络中semantic特征做attention map, 突出高分辨率特征中重要的信息, 压制干扰信息。

网络架构:

 以faster rcnn为baseline, RPN提取ROIs后, 每一个ROI都在backward pass产生的三个特征图上做ROI pooling, 这里使用skip pooling。三个特征同时进行, 最后FC层结束, 特征融合, 进行classification和regression。

location-aware deformable convolution:

这里举了3*3膨胀卷积, dilation size=2的例子。

至于context embeding module就是把上面介绍的location-aware deformable convolution融入如下模块:

两条支路, 上面是标准卷积, 下面是提出的卷积。

backward attention filtering module:

这个设计很类似FPN,只不过这里得semantic feature和T做的点乘, 当成了attention map来用。

小结: 感觉这个新的可变形卷积有点意思,对于收集感受野内不规则分布目标得特征会有帮助; 此外这个attention机制可以尝试。

"Depth Confidence-aware Camouflaged Object Detection" 是一篇关于深度置信感知伪装目标检测的论文。该论文介绍了一种用于检测伪装目标的新方法,该方法结合了深度信息和置信度感知。 伪装目标指的是那些在外观上与周围环境相似,很难被人眼或传统算法准确识别的目标。传统的目标检测方法在处理伪装目标时往往存在困难,因为伪装目标与背景具有相似的颜色、纹理或形状,导致目标难以被区分。 该论文中提出的方法通过结合深度信息和置信度感知来解决伪装目标检测的问题。具体而言,该方法首先利用深度传感器(如RGB-D相机)获取场景的深度信息,将其与RGB图像进行融合。然后,使用深度信息来提取特征,并通过深度感知模块来增强目标的边缘和轮廓特征。 此外,该方法还引入了置信度感知模块,用于评估每个像素点的置信度。置信度可以根据像素点的深度、颜色、纹理等信息计算得出。通过增强高置信度区域的特征表示,可以提高对伪装目标的检测能力。 最后,该方法使用深度置信感知的特征表示进行目标检测和分割。实验结果表明,该方法在多个公开数据集上取得了较好的性能,并且在伪装目标检测任务上相比其他方法具有明显的优势。 综上所述,"Depth Confidence-aware Camouflaged Object Detection" 这篇论文提出了一种利用深度信息和置信度感知来检测伪装目标的新方法。通过结合深度和置信度信息,该方法能够提高对伪装目标的检测准确性和鲁棒性。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值