深度学习论文笔记
文章平均质量分 65
i瓜子
这个作者很懒,什么都没留下…
展开
-
Region-based Convolutional Networks for Accurate Object Detection and Segmentation----R-CNN论文笔记
一、为什么提出R-CNN目标检测性能停滞不前,性能最好的集成方法又太复杂,所以作者提出了一个既能大幅提升性能,又更简单的R-CNN。二、R-CNN的框架上面的框架图清晰的给出了R-CNN的目标检测流程:1) 输入测试图像2) 利用selective search算法在图像中提取2000个左右的region proposal。3) 将每个region proposal变换(warp)成227x227原创 2016-06-25 16:51:26 · 3481 阅读 · 0 评论 -
Selective Search for Object Recognition----论文笔记
一、为什么提出selective search1)exhaustive search缺点多,像搜索域大(计算量大)、搜索尺度固定。2)传统的segmentation方法,依赖于单个强大的算法,计算开销大。selective search用多个融合准则(grouping criteria)和表达(representation)来处理各种图像内容(三个臭皮匠,赛过一个诸葛亮)。二、selective s原创 2016-06-26 11:46:56 · 1729 阅读 · 2 评论 -
Spatial Pyramid Pooling in Deep Convolutional Networks for Visual Recognition--SPP-net论文笔记
一、为什么提出SPP-net传统的CNNs网络的不足:对输入图像要求固定尺寸,其原因是网络最后面的全连接层要求是固定长度的特征向量。R-CNN框架发现,对图像提完region proposal(2000个左右)之后将每个proposal当成一张图像进行后续处理(CNN提特征+SVM分类),实际上对一张图像进行了2000次提特征和分类的过程,速度很慢!二、什么是SPP-net在CNN网络中最后一原创 2016-06-25 22:16:51 · 1500 阅读 · 0 评论 -
Fast R-CNN 论文笔记
Fast R-CNN 论文笔记一、为什么提出Fast R-CNN因为Fast R-CNN的前任R-CNN和SPP-net不给力。R-CNN训练分为多个阶段,步骤繁琐: 微调网络+训练SVM+训练边框回归器; 训练耗时又耗内存; 目标检测又慢。SPP-net虽然比R-CNN快一些,但和R-CNN同样存在训练步骤繁锁的问题,而且无法更新SPP-net之前的卷积层。二、Fast R-CNN的框架Fast原创 2016-06-27 18:38:36 · 976 阅读 · 0 评论 -
Faster R-CNN: Towards Real-Time Object Detection with Region Proposal Networks----论文笔记
一、为什么提出Faster R-CNNFaster R-CNN的前身Fast R-CNN能达到实时检测,如果不考虑它用selective search计算region proposal所花时间的话。为此作者提出了Region Proposal Network(RPN),该深度网络通过共享卷积网络,使计算region proposal的时间几乎可以忽略不计(10 ms/图)!原创 2016-06-28 20:08:01 · 1057 阅读 · 0 评论 -
Phased LSTM
Phased LSTM原创 2016-12-26 15:28:29 · 2530 阅读 · 0 评论