Faster R-CNN: Towards Real-Time Object Detection with Region Proposal Networks----论文笔记

一、为什么提出Faster R-CNN

Faster R-CNN的前身Fast R-CNN能达到实时检测,如果不考虑它用selective search计算region proposal所花时间的话。为此作者提出了Region Proposal Network(RPN),该深度网络通过共享卷积网络,使计算region proposal的时间几乎可以忽略不计(10 ms/图)!

三、RPN结构

1)输入: 一张图像,输出: 多个矩形object proposal

​ 注:每个object proposal都有objectness score,衡量此object proposal有多大程度上是一个物体。

2)输入图像经过前面多个共享的卷积层,至最后一个共享卷积层输出的conv feature map,才算刚到RPN网络的开始。

​ 注:conv feature map有好多张。

3)RPNconv feature map滑动的 n×n 窗口全连接,每个窗口映射到一个固定长度的低维向量(图示中是256维)。

4)此向量再分别输入两个全连接层:cls layerreg layer

​ 注:在每个窗口位置,会预测k个(文中k=9)region proposal。所以 cls layer输出2k个score来衡量这k个region proposal分别有多大程度属于物体,而reg layer输出4k维来定位(中心坐标、长、宽)各个box

5)以上只是一个窗口产生的box,一张图像一般会有2k左右的box,也就有相应数量的感兴趣图像区域(RoI)输入到fast R-CNN框架中。

NPR

三、Faster R-CNN的优点

1)替代掉费时的selective search方法,速度提高了。

2)能与Fast R-CNN共享一部分卷积层,计算效率(速度)提高了。

3)RPN产生的region proposal质量高,准确率(mAP)也提高了。

四、Faster R-CNN的缺点

1)文中采用的联合优化方法(joint optimizing)应该有更好的方法。

2)NPR产生的在图像边缘的region proposal信息被丢弃了。

五、Faster R-CNN的补充

  • 联合优化方法。

    ​1)用在ImageNet上训练好的模型初始化网络,然后微调网络以适用产生候选区域(region proposal)任务。

    ​2)利用第一步训练好的RPN产生的proposalFast R-CNN训练一个独立的检测网络,该检测网络也是用在ImageNet上训练好的模型初始化的。

    ​注:到目前两个网络还没有共享卷积层。

    ​3)用检测网络初始化RPN训练网络,但固定共有卷积层,只微调RPN网络独有的层。

    ​4)保持共有的卷积层固定,微调Fast R-CNN网络的fc层。

    ​注:至此,两个网络便共享了同样的卷积层,形成了一个统一的网络 。

  • 0
    点赞
  • 2
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值