Selective Search for Object Recognition----论文笔记

1)exhaustive search缺点多,像搜索域大(计算量大)、搜索尺度固定。

2)传统的segmentation方法,依赖于单个强大的算法,计算开销大。selective search用多个融合准则(grouping criteria)和表达(representation)来处理各种图像内容(三个臭皮匠,赛过一个诸葛亮)。

二、selective search的框架

设计思想:

  • 能捕捉到所有尺度,因为object有大有小。
  • 多样化,因为图像受颜色、纹理、光照条件等多种因素影响,单一策略无法适应所有情况。
  • 计算速度要快,因为谁不希望快嘛~

算法步骤:

1)初始化一些区域。

2)迭代融合区域:

    2.1)计算相邻区域的相似性。

    2.2)融合最相似的两个区域,得到融合后的区域。

    2.3)计算相邻区域的相似性。

3)一直迭代,直至整张图片成为一个区域。

注:相似性度量的设计思想是:融合后相似度r_l可以由整合前的两个相似度r_i、r_j计算得到,而不用再从像素级重新计算。

selective search

三、selective search的优点

1)可以多尺度捕捉图像。

2)相比于exhaustive search,计算速度快得多。

四、selective search的缺点

想不到,咋办。。。

五、selective search的适用场合

1)目标识别。

六、selective search的补充

为了适应复杂的图像内容,作者

1)利用了不同颜色空间所具有的不变性。

2)采用了多个相似度度量。

评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值