(int)(void *)a 是在干什么? ------ 可应用于函数多参数聚合

      我们先来看一个简单的程序:

 

#include <stdio.h>
#include <string.h>

int main(int argc, char *argv[])
{
	int a = 1;
	int b = (int)(void *)a;

	printf("%d\n", b);
	return 0;
}

      结果是1

 

 

      这引出下面一个问题: 如果一个函数有较多参数, 该怎么传呢? 当然, 我们可以用结构体, 把这些参数放在一个结构体里面。 然而, 我们要知道, 放在结构体中的一些变量最好是有逻辑关系的。 如果把一些不相关的变量放到结构体中, 显得不伦不类。 那怎么办? 可以考虑用如下方法:

 

#include <stdio.h>
#include <string.h>

void fun(void *p[])
{
	int x = (int)p[0];
	int y = (int)p[1];

	printf("%d, %d\n", x, y); // 1, 2
}

int main(int argc, char *argv[])
{
	int a = 1;
	int b = 2;

	void *p[] = {(void *)a, (void *)b};
	fun(p);

	return 0;
}

      初见这个方法时, 感觉挺奇葩的。 直到现在, 我依然认为这非常差的代码风格, 好吧, 见了认识即可。

 

 

      ok, 随笔总结一下而已。

 

 

好的,下面是一篇带有代码的MapReduce的编程开发-求和: 在MapReduce中,我们通常会使用两个函数:Map函数和Reduce函数。Map函数将输入数据分成若干个键值对,Reduce函数对这些键值对进行聚合操作。 下面是一个简单的MapReduce程序,用于计算输入文件中的数字的和: Map函数: ``` public class SumMapper extends Mapper<LongWritable, Text, Text, IntWritable> { private final static Text KEY = new Text("sum"); private final static IntWritable VALUE = new IntWritable(); public void map(LongWritable key, Text value, Context context) throws IOException, InterruptedException { String line = value.toString(); int sum = 0; StringTokenizer tokenizer = new StringTokenizer(line); while (tokenizer.hasMoreTokens()) { String token = tokenizer.nextToken(); sum += Integer.parseInt(token); } VALUE.set(sum); context.write(KEY, VALUE); } } ``` Reduce函数: ``` public class SumReducer extends Reducer<Text, IntWritable, Text, IntWritable> { private IntWritable result = new IntWritable(); public void reduce(Text key, Iterable<IntWritable> values, Context context) throws IOException, InterruptedException { int sum = 0; for (IntWritable val : values) { sum += val.get(); } result.set(sum); context.write(key, result); } } ``` 在这个程序中,我们定义了一个SumMapper类和一个SumReducer类。Map函数将输入文件中的数字分成一个个键值对,其中键为"sum",值为输入文件中的数字。Reduce函数对这些键值对进行求和操作,最终输出结果。 下面是一个完整的MapReduce程序: ``` public class SumJob { public static void main(String[] args) throws Exception { Configuration conf = new Configuration(); Job job = Job.getInstance(conf, "sum"); job.setJarByClass(SumJob.class); job.setMapperClass(SumMapper.class); job.setReducerClass(SumReducer.class); job.setOutputKeyClass(Text.class); job.setOutputValueClass(IntWritable.class); FileInputFormat.addInputPath(job, new Path(args[0])); FileOutputFormat.setOutputPath(job, new Path(args[1])); System.exit(job.waitForCompletion(true) ? 0 : 1); } } ``` 在这个程序中,我们使用Job类来定义MapReduce作业。我们设置了输入文件和输出文件的路径,以及Map和Reduce函数所在的类。最后,我们调用job.waitForCompletion()方法来执行作业,并等待作业完成。 这就是一个简单的MapReduce程序,用于计算输入文件中的数字的和。
评论 5
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值