【机器学习实战——第5章】:Logistic回归

梯度下降法

  • 假设有 m m m组样本 ( ( x 1 , x 2 ) , y ) ((x^{1},x^{2}),y) ((x1,x2),y)
  • 线性回归方程为:
    Y = w 0 ⋅ 1 + w 1 x 1 + w 2 x 2 Y=w_{0}\cdot1+w_{1}x^{1}+w_{2}x^{2} Y=w01+w1x1+w2x2
  • 目标为最小化损失函数 f m f_{m} fm
    f m = ∑ i = 1 m ( Y i − y i ) 2 = ∑ i = 1 m Y i 2 − 2 Y i y i + y i 2 f_{m}=\sum_{i=1}^{m}(Y_{i}-y_{i})^{2}\\ =\sum_{i=1}^{m}Y_{i}^{2}-2Y_{i}y_{i}+y_{i}^{2} fm=i=1m(Yiyi)2=i=1mYi22Yiyi+yi2
  • 每次迭代下降的方向为:
    Δ w j = δ f m δ w j = 2 ∑ i = 1 m ( Y i − y i ) x i j \Delta w_{j}=\frac{\delta f_{m}}{\delta w_{j}}=2\sum_{i=1}^{m}(Y_{i}-y_{i})x_{i}^{j} Δwj=δwjδfm=2i=1m(Yiyi)xij
    j = 0 j=0 j=0时:
    Δ w 0 = 2 ∑ i = 1 m ( Y i − y i ) ⋅ 1 \Delta w_{0}=2\sum_{i=1}^{m}(Y_{i}-y_{i})\cdot1 Δw0=2i=1m(Yiyi)1
    梯度上升  w : = w + α Δ w 梯度下降  w : = w − α Δ w \text{梯度上升 }w : =w+\alpha\Delta w\\ \text{梯度下降 }w : =w-\alpha\Delta w 梯度上升 w:=w+αΔw梯度下降 w:=wαΔw
  • 对于本例 x x x是三维向量的情况:
    w = w − ( 1 1 1 ⋯ 1 x 1 1 x 2 1 x 3 1 ⋯ x m 1 x 1 2 x 2 2 x 3 2 ⋯ x m 2 ) ⋅ ( Y 1 − y 1 Y 2 − y 2 ⋮ Y m − y m ) w=w- \begin{pmatrix} 1&1&1&\cdots&1\\ x_{1}^{1}&x_{2}^{1}&x_{3}^{1}&\cdots&x_{m}^{1}\\ x_{1}^{2}&x_{2}^{2}&x_{3}^{2}&\cdots&x_{m}^{2}\\ \end{pmatrix}\cdot \begin{pmatrix} Y_{1}-y_{1}\\ Y_{2}-y_{2}\\ \vdots\\ Y_{m}-y_{m}\\ \end{pmatrix} w=w1x11x121x21x221x31x321xm1xm2Y1y1Y2y2Ymym

Logistic回归

  • Sigmoid函数
    σ ( x ) = 1 1 + e − x \sigma(x)=\frac{1}{1+e^{-x}} σ(x)=1+ex1
    在这里插入图片描述
  • 对于二分类问题,上文提到的损失函数并非凸函数,所以需要重新定义损失函数,该函数是凸函数
    J ( θ ) = 1 m ∑ i = 1 m C o s t ( h θ ( x i ) , y i ) J(\theta)=\frac{1}{m}\sum_{i=1}^{m}Cost(h_{\theta}(x^{i}),y^{i}) J(θ)=m1i=1mCost(hθ(xi),yi)
    C o s t ( h θ ( x i ) , y i ) = { − l o g ( h θ ( x ) ) y = 1 − l o g ( 1 − h θ ( x ) ) y = 0 Cost(h_{\theta}(x^{i}),y^{i})= \left\{ \begin{array}{rcl} -log(h_{\theta}(x)) & {y=1}\\ -log(1-h_{\theta}(x)) & {y=0} \end{array} \right. Cost(hθ(xi),yi)={log(hθ(x))log(1hθ(x))y=1y=0
    J ( θ ) = − 1 m [ ∑ i = 1 m y i l o g ( h θ ( x i ) ) + ( 1 − y i ) l o g ( 1 − h θ ( x i ) ) ] J(\theta)=-\frac{1}{m}[\sum_{i=1}^{m}y^{i}log(h_{\theta}(x^{i}))+(1-y^{i})log(1-h_{\theta}(x^{i}))] J(θ)=m1[i=1myilog(hθ(xi))+(1yi)log(1hθ(xi))]

训练算法:使用梯度下降找到最佳参数

#Logistic回归梯度上升优化算法
import numpy as np
def loadDataSet():
    dataMat=[]; labelMat=[]
    fr=open('testSet.txt')
    for line in fr.readlines():
        lineArr=line.strip().split()
        dataMat.append([1.0,float(lineArr[0]),float(lineArr[1])])
        labelMat.append(int(lineArr[2]))
    return dataMat,labelMat

def sigmoid(inX):
    return 1.0/(1+np.exp(-inX))

def gradAscent(dataMatIn,classLabels):
    dataMatrix=np.mat(dataMatIn)
    labelMat=np.mat(classLabels).transpose()
    m,n=np.shape(dataMatrix)
    alpha=0.001
    maxCycles=500
    weights=np.ones((n,1))
    for k in range(maxCycles):
        h=sigmoid(dataMatrix*weights)
        error=(labelMat-h)
        weights=weights+alpha*dataMatrix.transpose()*error
    return weights

分析数据:画出决策边界

def plotBestFit(weights):
    import matplotlib.pyplot as plt
    dataMat,labelMat=loadDataSet()
    dataArr=np.array(dataMat)
    n=np.shape(dataArr)[0]
    xcord1=[]; ycord1=[]
    xcord2=[]; ycord2=[]
    for i in range(n):
        if(int(labelMat[i])==1):
            xcord1.append(dataArr[i,1]); ycord1.append(dataArr[i,2])
        else:
            xcord2.append(dataArr[i,1]); ycord2.append(dataArr[i,2])
    fig=plt.figure()
    ax=fig.add_subplot(111)
    ax.scatter(xcord1,ycord1,s=30,c='red',marker='s')
    ax.scatter(xcord2,ycord2,s=30,c='green')
    x=np.arange(-3.0,3.0,0.1)
    y=(-weights[0]-weights[1]*x)/weights[2]
    ax.plot(x,y)
    plt.xlabel('X1'); plt.ylabel('X2');
    plt.show()

在这里插入图片描述

随机梯度下降算法

梯度上升算法每次更新回归系数时,要遍历整个数据集,时间复杂度较高。一种改进方法是一次只用一个样本点来更新回归系数,该方法称为随机梯度上升算法

所有回归系数初始化为1
对数据集中每个样本:
	计算该样本的梯度
	使用alpha*gradient更新回归系数值
返回回归系数值
def stocGradAscent0(dataMatrix,classLabels):
    m,n=np.shape(dataMatrix)
    alpha=0.1
    weights=np.ones(n)
    for i in range(m):
        h=sigmoid(np.sum(dataMatrix[i]*weights))
        error=classLabels[i]-h
        weights=weights+alpha*error*dataMatrix[i]
    return weights

在这里插入图片描述
该拟合直线并非最佳分类线

改进的随机梯度下降算法

def stocGradAscent1(dataMatrix,classLabels,numIter=150):
    m,n=np.shape(dataMatrix)
    weights=np.ones(n)
    for j in range(numIter):
        dataIndex=np.array(range(m))
        for i in range(m):
            alpha=4/(1.0+i+j)+0.01
            randIndex=int(np.random.uniform(0,m))
            h=sigmoid(sum(dataMatrix[randIndex]*weights))
            error=classLabels[randIndex]-h
            weights=weights+alpha*error*dataMatrix[randIndex]
            np.delete(dataIndex,randIndex)
    return weights

在这里插入图片描述

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值