代数
文章平均质量分 79
无峥
这个作者很懒,什么都没留下…
展开
-
Untitled2
学习什么是”线性相关性“,“线性无关”,什么是由向量组所“生成”的空间,什么是向量空间的“基”,什么是子空间的“维数”。由上一讲可知:Ax=bAx=bAx=b,其中Am,nAm,nA_{m,n}.则Ax=0Ax=0Ax=0存在非0解,因为A消元后存在自由列。1.向量组线性相关性线性无关的定义:若向量作为列向量构成矩阵A,则方程Ax=0 只有零解x=0。 反之,则称为线性相关。对于矩...转载 2018-06-29 10:58:03 · 1081 阅读 · 0 评论 -
线性代数导论---方程组的几何解释
本部分博客复制https://blog.csdn.net/suqier1314520/article/list/3?t=1的文章,因为其图片显示不出来,做一下丰富。第一课时:方程组的几何解释一、线性方程组的两种理解方式:行图像和列图像对于方程组: { 2x−y=0 −x+y=3{ 2x−y=0 −x+y=3\begin{cases} \ ...转载 2018-06-28 15:16:15 · 912 阅读 · 0 评论 -
2矩阵消元
本部分博客复制https://blog.csdn.net/suqier1314520/article/list/3?t=1的文章,因为其图片显示不出来,做一下丰富。第二课时:矩阵消元本课时的目标是用矩阵变换描述消元法。核心概念是矩阵变换。一、消元法消元法:将主对角线上的主元固定(0不能做主元),把主元下面的元素消为0。过程:先完成左侧矩阵的消元(变成上三角矩阵),再回代...转载 2018-06-28 15:31:48 · 557 阅读 · 0 评论 -
3乘法和逆矩阵
本部分博客复制https://blog.csdn.net/suqier1314520/article/list/3?t=1的文章,因为其图片显示不出来,做一下丰富。第三课时:乘法与逆矩阵本课时先讲解矩阵乘法运算,然后是逆矩阵一、矩阵乘法:5种方法![这里写图片描述](https://img-blog.csdn.net/20180628155001865?watermark/2/...转载 2018-06-28 15:52:33 · 1014 阅读 · 0 评论 -
4列空间和零空间
本部分博客复制https://blog.csdn.net/suqier1314520/article/list/3?t=1的文章,因为其图片显示不出来,做一下丰富。第六课时:列空间和零空间特别关注矩阵的列空间和零空间回忆什么是向量空间:就是许多向量,对加法和数乘运算封闭,原点本身满足加法和数乘封闭所以向量空间一定包含原点。 什么是子空间:向量空间内的一些向量,它们属于母空间,...转载 2018-06-28 16:35:07 · 1299 阅读 · 0 评论 -
5求解Ax=0:主变量、特解
第七课时:求解Ax=0:主变量、特解本课时将讲解如何计算那些空间中的向量,从概念定义转向算法,求解Ax=0的算法是怎样的,即如何求解零空间。消元法解Ax=0 消元过程中,方程通过加减消元本质上是线性变换,解是不会改变的。实际上,消元法改变了系数矩阵的列空间,而不改变系数矩阵的行空间。 所以,注意消元过程中不变的是什么,随消元不变的是方程组的解。 行向量或者列向量之间的相关性可以在消元...转载 2018-06-29 09:13:57 · 3936 阅读 · 0 评论 -
7四个基本子空间
假设AAA是m×nm×nm×n,列空间C(A)C(A)C(A),零空间N(A)N(A)N(A),行空间C(AT)C(AT)C(A^{T}),A转置的零空间N(AT)N(AT)N(A^{T})(通常叫左零空间),研究这四个基本子空间及其关系是线性代数的核心内容。我们从上一讲中的基、维数对这四个空间进行学习。1.维数1.1四种空间的定义AAA是m×nm×nm\times n 的矩阵...转载 2018-06-30 10:02:44 · 2462 阅读 · 0 评论 -
8正交向量与子空间
前面还是图和网络的内容,感觉与自己所求相差较多,可以参考:https://blog.csdn.net/huang1024rui/article/details/68951624第十四课时:正交向量与子空间本文讲解什么是向量的正交,什么是子空间的正交,什么是基的正交。正交向量在n维空间中,向量之间的夹角是90度判断两个向量X,YX,YX,Y是否正交,求乘积XTYXTYX^...转载 2018-06-30 11:35:06 · 651 阅读 · 0 评论 -
9子空间的投影和Ax=b
转载自:https://blog.csdn.net/huang1024rui/article/details/69258689此课老师说要名垂千古,就当作重中之重吧,讲投影,怎样投影,为什么要投影到其他子空间。引子:上一讲中遇到Ax=bAx=bAx=b无解的时候提到,当其无解的时候,我们求的解是什么?我们想要的”最优解”对于原方程偏差最小,我们知道Ax=bAx=bAx=b有解时bb...转载 2018-06-30 16:21:26 · 1196 阅读 · 0 评论 -
10投影矩阵和最小二乘
转载自:https://blog.csdn.net/huang1024rui/article/details/69568991上一讲中,我们知道了投影矩阵P=A(ATA)−1ATP=A(ATA)−1ATP=A(A^{T}A)^{-1}A^{T},PbPbPb将会把向量投影在A的列空间中。即只要知道矩阵AAA的列空间,就能得到投影矩阵PPP。1.投影矩阵(Ax=b无解的情形)1.1两...转载 2018-07-01 11:18:25 · 760 阅读 · 0 评论 -
11正交矩阵和Gram-Schmidt正交化法
转载自:https://blog.csdn.net/huang1024rui/article/details/69568991这是关于正交性最后一讲,已经知道正交空间,比如行空间和零空间,今天主要看正交基和正交矩阵1.标准正交基与正交矩阵1.定义标准正交向量(orthonormal): qTiqj={01i!=ji=jqiTqj={0i!=j1i=jq^T_iq_j= \be...转载 2018-07-01 17:34:33 · 11141 阅读 · 1 评论 -
6求解Ax=b:可解性和解的结构
第八课时:求解Ax=b:可解性和解的结构本课时的目标是Ax=b,可能有解,也可能无解,需要通过需要消元才知道,有解的话是唯一解还是很多解。1.Ax=b首先,继续上次课的例子: 通过以上推导可以看到,如果方程组有解,必须满足b3=b1+b2b3=b1+b2b_{3}=b_{1}+b_{2}。消元告诉我们,这是必须的。换句话说,左侧行的线性组合得到0,那么右侧常量线性组合也比...转载 2018-06-29 09:54:54 · 12831 阅读 · 0 评论