11正交矩阵和Gram-Schmidt正交化法

转载自:https://blog.csdn.net/huang1024rui/article/details/69568991

这是关于正交性最后一讲,已经知道正交空间,比如行空间和零空间,今天主要看正交基和正交矩阵

1.标准正交基与正交矩阵


1.定义标准正交向量(orthonormal): qTiqj={01i!=ji=j q i T q j = { 0 i!=j 1 i=j

2.将标准正交向量放入矩阵中,有 Q=[q1q2qn] Q = [ q 1 q 2 … q n ] ,计算 QTQ Q T Q

QTQ=100010......001=I Q T Q = [ 1 0 . . . 0 0 1 . . . 0 ⋮ ⋮ ⋱ ⋮ 0 0 ⋯ 1 ] = I

我们也把 Q Q 成为标准正交矩阵(orthonormal matrix)


标准正交基

例1:

这里写图片描述

例2:

Q=12[1111]

上面矩阵列向量长度为1,列向量相互正交。

例3:

Q=c[QQQQ] Q ′ = c [ Q Q Q − Q ]

上面矩阵取合适的c使得矩阵的列向量长度为1,也可以构造标准正交矩阵。构造结果如下:

Q=121111111111111111 Q = 1 2 [ 1 1 1 1 1 − 1 1 − 1 1 1 − 1 − 1 1 − 1 − 1 1 ]

这种构造方法以阿德玛(Adhemar)命名,对2,4,16,64,⋯阶矩阵有效。

格拉姆-施密特正交化法的缺点在于,由于要求得单位向量,所以我们总是除以向量的长度,这导致标准正交矩阵中总是带有根号,而上面几个例子很少有根号。

标准正交矩阵

QTQ Q T Q 对任意的 Q Q 都成立,但我们更关注Q方阵时的情况,因为其有逆且由 QTQ=IQ1=QT Q T Q = I ⇒ Q − 1 = Q T ,我们叫这种column vector为标准正交向量组成且为方阵的矩阵为**正交矩阵**orthogonal matrix。

注意:标准正交矩阵 orthogonormal matrix不一定是方阵,当它是方阵的时候,我们叫它正交矩阵 orthogonal matrix。


1.2正交矩阵

为什么我们如此关注标准正交矩阵 orthogonormal matrix为方阵 的情形?

上一讲我们研究了 ATA A T A 的特性,联系我们之前学习的投影矩阵projection matrix,将向量 b b 投影在标准正交矩阵Q的列空间中,根据上一讲的公式得P=Q(QTQ)1QT,由于标准正交矩阵Q的性质,易得 P=QQT P = Q Q T

我们断言,当列向量为标准正交基时, QQT Q Q T 是投影矩阵。极端情况,假设矩阵是方阵,而其列向量是标准正交的,则其列空间就是整个向量空间,而投影整个空间的投影矩阵就是单位矩阵,此时 QQT=I Q Q T = I

我们计算的 ATAx=ATb A T A x = A T b ,现在变为 QTQx^=QTb Q T Q x ^ = Q T b ,也就是 x=QTb x = Q T b ,分解开来看就是 x^qTi=qTib x ^ q i T = q i T b ,这个式子在很多数学领域都有重要作用。当我们知道标准正交基,则解向量第 i i 个分量为基的第i个分量乘以b,在第 i i 个基方向上的投影就等于qiTb

2. Gram-Schmidt正交化法

这是一种将矩阵转化为标准正交向量orthogonormal matrix的方法。按老师的说法Schmidt教我们如何将一个向量标准化normalized,而Graham教我们如何使得各个向量正交orthogonal。

总思路: 已知相互无关的向量 a,b a , b ,目标要将 a,b a , b 变成相互正交且长度为1的 q1,q2 q 1 , q 2 ,可将向量 a a 固定,然后b投影到 a a 上,误差e=b.


这里写图片描述
这里写图片描述
这里写图片描述

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值