10投影矩阵和最小二乘

转载自:https://blog.csdn.net/huang1024rui/article/details/69568991

上一讲中,我们知道了投影矩阵 P=A(ATA)1AT P = A ( A T A ) − 1 A T Pb P b 将会把向量投影在A的列空间中。即只要知道矩阵 A A 的列空间,就能得到投影矩阵P

1.投影矩阵(Ax=b无解的情形)
1.1两个极端的例子:

1) 如果 bC(A) b ∈ C ( A ) ,则 Pb=b P b = b
2) 如果 bC(A) b ⊥ C ( A ) ,则 Pb=0 P b = 0

证明1):
Pb=A(ATA)1ATb=A(ATA)1ATAx=A((ATA)1ATA)x=Ax=b P b = A ( A T A ) − 1 A T b = A ( A T A ) − 1 A T A x = A ( ( A T A ) − 1 A T A ) x = A x = b
证明2):

Pb=A(ATA)1ATb=A(ATA)1(ATb)=A(ATA)10=0 P b = A ( A T A ) − 1 A T b = A ( A T A ) − 1 ( A T b ) = A ( A T A ) − 1 0 = 0

具体的图示化看下文:

1.2一般情形

一般情况下, b b 将会有一个垂直于A的分量,有一个在 A A 列空间中的分量,投影的作用就是去掉垂直分量而保留列空间中的分量。

这里写图片描述

向量b投影后,有 b=e+p,p=Pb,e=(IP)b b = e + p , p = P b , e = ( I − P ) b ,这里的 p p b C(A) C ( A ) 中的分量,而 e e b N(AT) N ( A T ) 中的分量。

可以理解为:向量 b b 的投影在A的列空间,偏差向量的投影在左零空间上,我们知道 P P ,可以将b投影到 p p ,那么一个什么样的投影矩阵把b投影到了 e e ?因为列空间左零空间正交补,所以他们共同组成了整个空间,I列空间就是整个空间, IP I − P 就是把 b b 投影到e的矩阵。

2. 最小二乘法(Ax=b)

回到上一讲最后提到的例题:

我们需要找到距离图中三个点 (1,1),(2,2),(3,2) ( 1 , 1 ) , ( 2 , 2 ) , ( 3 , 2 ) ,偏差最小的直线: y=C+Dt y = C + D t

这里写图片描述

根据条件可以得到方程组:
这里写图片描述,写作矩阵形式:这里写图片描述,也就是我们的 Ax=b A x = b ,很明显方程组无解。

此时我们要找到最接近的解”最优解”,我们要使得解最优即误差最小,定义误差为 Axb=e A x − b = e 的模长的平方即 Axb2=e2=e21+e22+e23 ∥ A x − b ∥ 2 =∥ e ∥ 2 = e 1 2 + e 2 2 + e 3 2 。此处使用平方的原因一是排除开根号带来的非线性运算,一是方便利用偏导数求解最小值。

2.1利用偏导

这里如果使用偏导数我们也能得到关于最优解的方程,展开结果为:

这里写图片描述

然后对 C C 求偏导为6C10+12D=0;对D求偏导为 28D22+12C=0 28 D − 22 + 12 C = 0 。 解方程得 C^=23,D^=12 C ^ = 2 3 , D ^ = 1 2 ,则“最佳直线”为 y=23+12t y = 2 3 + 1 2 t ,则“最佳直线”为y=23+12t,带回原方程组解得 p1=76,p2=53,p3=136 p 1 = 7 6 , p 2 = 5 3 , p 3 = 13 6 ,即 e1=16,e2=13,e3=16 e 1 = − 1 6 , e 2 = 1 3 , e 3 = − 1 6 。 最终得到: p=7653136 p = [ 7 6 5 3 13 6 ] ,这里写图片描述,易看出 b=p+e b = p + e ,同时我们发现 pe=0 p ⋅ e = 0 pe p ⊥ e 。可以验证,向量 p p e e 正交,并且e 与矩阵 A A 的列空间正交。

可以验证,向量p e e 正交,并且e 与矩阵 A A 的列空间正交。

pTe=7/6(1/6)+5/31/3+13/6(1/6)=0

eTa1=1(1/6)+11/3+1(1/6)=0 e T a 1 = 1 ∗ ( − 1 / 6 ) + 1 ∗ 1 / 3 + 1 ∗ ( − 1 / 6 ) = 0

eTa2=1(1/6)+21/3+3(1/6)=0 e T a 2 = 1 ∗ ( − 1 / 6 ) + 2 ∗ 1 / 3 + 3 ∗ ( − 1 / 6 ) = 0

误差向量e不仅垂直于投影向量p,它同时垂直于列空间。

2.2利用矩阵

用矩阵的方法求解 Ax^=Pb A x ^ = P b 得到的方程是一样的,现在我们尝试解出 x^=[C^D^],p=p1p2p3 x ^ = [ C ^ D ^ ] , p = [ p 1 p 2 p 3 ]

这里写图片描述

这里写图片描述

3.证明 ATA A T A 可逆

这里写图片描述

这里写图片描述

  • 0
    点赞
  • 1
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值