codeforces1154G

  • 题意
    求在 n n n个数中找到两个数使其 l c m ( a i , a j ) lcm(a_i,a_j) lcm(ai,aj)最小

  • 分析
    l c m ( a , b ) = a ∗ b g c d ( a , b ) lcm(a,b) = {\frac{a*b}{gcd(a,b)}} lcm(a,b)=gcd(a,b)ab 可以从小到大枚举 g c d ( a , b ) gcd(a,b) gcd(a,b),再找到两个最小的 a , b a,b a,b,这样 l c m ( a , b ) lcm(a,b) lcm(a,b)一定最小。
    枚举 i i i表示 g c d ( a , b ) gcd(a,b) gcd(a,b)
    那么 a a a就确定了是 i ∗ m i*m im,b就是 i ∗ n i*n in,只要数组中出现过这两个数就是待更新的答案。

  • 代码

/*
  独立思考
  一个题不会做,收获5%,写了代码10%,提交对了30%,总结吃透了这个题才是100%.
*/
#include<bits/stdc++.h>
using namespace std;
template <typename T>
void read(T &x)
{
	x = 0;
	char c = getchar();
	int sgn = 1;
	while (c < '0' || c > '9') {if (c == '-')sgn = -1; c = getchar();}
	while (c >= '0' && c <= '9')x = x * 10 + c - '0', c = getchar();
	x *= sgn;
}
template <typename T>
void out(T x)
{
	if (x < 0) {putchar('-'); x = -x;}
	if (x >= 10)out(x / 10);
	putchar(x % 10 + '0');
}
typedef long long ll;
typedef unsigned long long ull;
ll gcd(ll a, ll b) { return b ? gcd(b, a % b) : a;}
const int N = 1e6 + 5;
bitset<N * 10> v, v1;//标记数组,v标记元素是否出现,v1标记元素是否出现多次
int a[N];
std::vector<int> ans;
int main ()
{
	int n;
	read(n);
	for (int i = 1; i <= n; i++) read(a[i]);
	int mx = 0;
	for (int i = 1; i <= n; i++)
	{
		mx = max(mx, a[i]);
		if (v[a[i]] == 1) v1[a[i]] = 1;
		v[a[i]] = 1;
	}
	ll res = 1e18;
	int pos1 = 0, pos2 = 0;
	int l = -1;//答案
	int r = -1;
	for (int i = 1; i <= mx; i++)
	{
		ans.clear();
		for (int j = i; j <= mx; j += i)
		{
			if (v[j])
			{
				ans.push_back(j);//a出现
				if (v1[j]) ans.push_back(j);//出现了两次
				if (ans.size() >= 2) break;
			}
		}
		if (ans.size() < 2) continue;
		if (res > (ll) ans[0] * ans[1] / i)//更新答案
		{
			res = (ll)ans[0] * ans[1] / i;
			pos1 = ans[0];
			pos2 = ans[1];
		}
	}
	for (int i = 1; i <= n; i++)//找到坐标
	{
		if (a[i] == pos1) {
			l = i;
			break;
		}
	}
	for (int i = 1; i <= n; i++)
	{
		if (a[i] == pos2 && l != i)
		{
			r = i;
			break;
		}
	}
	if (l > r) swap(l, r);
	cout << l << " " << r << endl;
	return 0 ;
}
  • 方法
    枚举
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值