堆结构知识点复习——玩转堆结构

        前言:堆算是一种相对简单的数据结构, 本篇文章将详细的讲解堆中的知识点, 包括那些我们第一次学习堆的时候容易忽略的内容, 本篇文章会作为重点详细提到。 

        本篇内容适合已经学完C语言数组和函数部分的友友们观看。

        

目录

什么是堆

建堆算法

向上调整算法

算法原理

如何计算parent

代码

向下调整算法

算法原理

寻找较小孩子 

代码

建堆

向下调整算法建堆

建堆过程

建堆的时间复杂度

向上调整算法建堆

建堆过程

建堆的时间复杂度


什么是堆

        首先来看什么是堆:

  • 堆在逻辑结构上是一种完全二叉树。
  • 堆的物理结构是数组。
  • 堆分为大根堆和小根堆。
  • 大根堆就是父亲节点大于左右孩子, 小根堆就是父亲节点小于左右父亲。

这里分析一个问题:堆相较于顺序表存不存在大量的空间浪费?

普通的二叉树如果使用数组来存储会出现大量的空间浪费。 但是堆是一颗完全二叉树, 完全二叉树就是除了叶子结点, 其他层上面的分支节点全都是满的。 而且叶子结点也全部是连续的, 这样的结构如果使用数组来存储就不会存在大量浪费的情况。 

逻辑结构的堆:

物理结构的堆:

建堆算法

建堆有两个算法:

  • 向上调整算法
  • 向下调整算法

向上调整算法

向上调整算法是从堆底向上调整。

向上调整算法的使用前提是:要向上调整的节点的前面的数组已经是一个堆。

算法原理

示例:

如图为一个小堆:

        1.现在插入一个0。那么这个0先插入在最后的位置。

         然后向上调整算法的过程就是:2.以刚刚插入的位置为child节点。 他的父亲为parent节点。 进行比较。

        3.比较child比parent小(注意, 现在是排的小堆, 小堆的父亲比左右孩子小), 那么就要向上调整一下, 让父亲变成0, child变成3。(这里如果不小的话, 就说明此时就是一个小堆, 那么就结束调整。结束算法)

        4.然后让child变成指向parent的节点。 parent指向当前节点的父亲节点。 

       5. 然后回到2, 重新循环.  直到遇到child不小于parent或者child已经是堆顶元素。如图:

此时child指向堆顶。 没有父亲节点, 也就不需要再进行向上调整。 

时间复杂度:

  • O(lgN)。

因为每次调整一下最坏的情况就是从堆底调整到堆顶。 对于一颗满二叉树(没写错, 就是满二叉树)来说, 有2 * h - 1 == N;   一棵满二叉树的高度是h == lg(N + 1)。所以它向上调整一次最坏的情况是调整lgN次(1被忽略)。那么对于完全二叉树来说, 比满二叉树还要少许多节点, 层数一样。 那么它的最坏调整次数也是lgN。所以时间复杂度就是lgN。 

如何计算parent

        假设有一个元素个数为6的小堆。
 

此时元素个数为6。 堆的物理结构就是:

从逻辑结构中我们可以看到对于3这个位置来说, 它的左右两个孩子的下标是5和6。 (5 - 1) / 2 == 2 ; (6 - 1) /   2 == 2;

对于图中的5节点来说,5的下标是1, 它的左右孩子的下标是3和4。 而 (3 - 1) / 2 == 1; (4 - 1)  / 2 == 1;

这里就有一个结论:

  • parent == (child - 1) / 2;

代码

//向上调正算法
void AdjustUp(int* arr, int n)   //arr是一个等待调整的数组, n是这个数组的大小。
{//要使用向上调整算法, 说明此时arr的前n - 1个元素是一个堆。 第n个元素是等待向上调整的元素。

	int child = n - 1;              //第n个元素的下标是n - 1。     
	int parent = (child - 1) / 2;   //算出parent的位置
	while (child > 0)               //如果child到了堆顶, 那么就没有父亲, 也就不用比了。
	{
		if (arr[child] < arr[parent]) 
		{
			swap(&arr[child], &arr[parent]);
			child = parent;
			parent = (parent - 1) / 2;

		}
		else                        //如果孩子节点比父亲节点还大, 那么也不用比了, 此时就是个堆
		{
			break;
		}

	}
}

向下调整算法

算法原理

向下调整算法要求左右两棵子树都是堆, 然后以根节点为基准向下进行调整。 

示例:

        如图是一个数组

这个数组如果转化为堆的逻辑结构就是如图:

        观察逻辑结构, 我们很容易可以观察到9的左右两边都是小堆。符合向下调整算法的要求(如果左右两边有一边不是堆结构, 那么就不可以使用向下调整算法),向下调整算法的流程为:

        1.  定义parent指向9的位置。 child指向左右边小的那个节点。 因为这里1比5小, 所以指向1。

          2.  然后比较child和parent。 如果child小于parent。 那么就要交换位置, 否则退出循环, 算法结束。

        3.  交换数据之后移动指针, parent指向child指向的节点。 child指向当前节点的左右孩子中较小的那个。

        4.  然后重复2的操作。 一直到child大于parent或者查出数组的范围。退出循环, 算法结束.

时间复杂度

  • O(lgN)

       时间复杂度的计算和向上调整算法一样。 对于一个堆来说,最坏的情况就是从堆顶向下调整到堆底,那么调整次数就是树的高度次。 而树的高度的数量级是lgN级别。 所以时间复杂度就是O(lgN)。

寻找较小孩子 

        可以利用假设法寻找左右孩子中较小的那一个。       

        对于一个父亲节点, 它的左孩子的下标是child == parent * 2 + 1; 右孩子就是child == parent * 2 + 2;

假设过程如下:

  •      先假设左孩子是较小的那个孩子。
  •      然后, 就比较左孩子和右孩子
  •      如果右孩子比左孩子更小, 那么就让右孩子变成较小的那个孩子。

代码


//向下调整算法
void AdjustDown(int* arr, int n, int parent)  //arr是要调整的数组, n是要建堆数组的大小。 parent下调的基准点。
{
	int child = parent * 2 + 1;               //先假设孩子节点是父亲节点的左边

	while (child < n)                         
	{
		//如果右孩子更小, 那么就让child变成父亲节点的右边
		if (child + 1 < n && arr[child + 1] < arr[child]) child++;              
		if (arr[child] < arr[parent]) 
		{
			swap(&arr[child], &arr[parent]);

			parent = child;
			child = child * 2 + 1;
		}
		else 
		{
			break;
		}
	}
}

建堆

向下调整算法建堆

建堆过程

        向下调整建堆需要保证那个要调整的节点的左右子树都是堆。 所以我们进行向下调整建堆的时候要从堆底向堆顶建堆。 具体过程如下:

假设如图为要调整成为堆的数组的逻辑结构:

       我们首先要从堆底的第一个非叶子节点开始向下调整,就像下图的最右边的那个红框框。 从这个红框框中的非叶子节点开始向下调整。 从右向左, 先将这一层的非也节点全部调整为堆。 

       此时, 这一层往下都是堆结构, 那么我们就可以向上一层进行调堆。

 

 当我们调好红框框中的堆后, 就可以调绿框框的堆。 

 然后绿框框的堆调好之后我们就可以调以堆顶为基准的堆, 那么这整个数组就建堆完成。 

 

建堆的时间复杂度

        个人认为堆里面最难的一部分内容, 就是建堆的时间复杂度。 可能有的友友会说, 建堆的时间复杂度是O(N * lgN) 。 博主一开始也以为是O(N * lg N), 但是其实只有向上调整建堆是O(N * lgN)。 而向下调整建堆的时间复杂度其实是O(N)。 为什么? 这里其实用到了高中的错位相减法求时间复杂度。

        假设这是一个h层的树结构。

那么当我们建堆的时候。  从倒数第二层开始向下调整。假设一共h层。证明如下:

  • 第h - 1层有2 ^ (h - 2) 个节点, 每一个节点最多向下调整一次。 一共调整2 ^ (h - 2) * 1次。
  • 倒h - 2层有2 ^ (h - 3) 个节点, 每一个节点最多向下调整两次。 一共调整2 ^ (h - 3) * 2次。
  • 倒h - 3层有2 ^ (h - 4) 个节点, 每一个节点最多向下调整三次。 一共调整2 ^ (h - 4) * 3次。
  • …………
  • …………
  • …………
  • 第三层有2 ^ 2个节点, 每一个节点最多向下调整h - 3次。一共调整 2 ^ 2 * (h - 3)次。
  • 第二层有2 ^ 1个节点, 每一个节点最多向下调整h - 2次。 一共调整2 ^ 1 * (h - 2)次。
  • 第一层有2 ^ 0个节点, 每一个节点最多向下调整h - 1次。 一共调整2 ^ 0 * (h - 1)次。

这些次数加起来就是一个等差乘以等比类型的数列求和。

        T(h) == 2 ^ 0 * (h - 1) + 2 ^ 1 * (h - 2) + 2 ^ 2 * (h - 3) + …… + 2 ^ (h - 4) * 3 + 2 ^ (h - 3) * 2 + 2 ^ (h - 2) * 1

   2 * T(h) ==             2 ^ 1 * (h - 1) + 2 ^ 2 * (h - 2) + …… + 2 ^ (h - 4) * 4 + 2 ^ (h - 3) * 3 + 2 ^ (h - 2) * 2 + 2 ^ (h - 1) * 1;

        所以 :T(h) == - (h - 1) + 2 + 2 ^ 2 + 2 ^ 3 + …… + 2 ^ (h - 2) + 2 ^ (h - 1)

                           == 2 ^ h - h;

由完全二叉树的规则: N == 2 ^ h - 1; 将这个式子带入上面T(h)就能得到T(N) == N + 1 - lgN

由大O的渐进表示法可知, 时间复杂度为O(N)

代码:


void CreatHeap(int* arr, int sz) 
{
	for (int i = (sz - 1 - 1) / 2; i >= 0; i--)   //(sz - 1) / 2是第一个非叶节点。
	{
		//向下调整建堆
		AdjustDown(arr, sz, i);    //以i为基准, 最大下标为sz;
	}
}

向上调整算法建堆

建堆过程

向上调整建堆需要前面的数组为堆结构。 所以和向下调整建堆相反,它是从堆顶开始建堆。建堆过程需要从下标为0开始向后遍历进行向上调整建堆。 建堆过程如下:

如图为一树结构。 

对于这个结构。 我们要先从第一个堆顶位置开始向下调。

然后调第二个元素

再调第三个元素, 第四个元素……第n个元素。 依次类推。

建堆的时间复杂度

        我们同样使用前面的方法, 将每一层的节点的调整次数列出来。 如下:

  • 第一层:2 ^ 0节点, 调整0次
  • 第二层:2 ^ 1节点, 每个节点调整1次。一共调整2 ^ 1 * 1次。
  • 第三层:2 ^ 2节点, 每个节点调整2次。一共调整2 ^ 2 * 2次。
  • 第四层:2 ^ 3节点, 每个节点调整3次。 一共调整2 ^ 3 * 3次。
  • …………
  • …………
  • …………
  • 第h - 2层: 2 ^ (h - 3)节点, 每个节点调整h - 3次。 一共调整2 ^ (h - 3) * (h - 3)次。
  • 第h - 1层:2 ^ (h - 2)节点, 每个节点调整h -2次。 一共调整2 ^ (h - 2) * (h - 2)次。
  • 第h 层: 2 ^ (h - 1)节点, 每个节点调整h - 1次。 一共调整2 ^ (h - 1) * (h - 1)次。

       利用N == 2 ^h - 1代入可得最后一层节点个数大约为N / 2。(这其实也是满二叉树的性质。)

       所以我们只需要看第h层调整需要的节点个数, 因为对于一棵完全二叉树来说, 最后一层的节点个数相当于其所有节点个数的一半。 那么每个节点向上调整的次数都是lgN。 所以对于向上调整算法建堆的时间复杂度就是O(N * lgN)

代码:

void CreatHeap(int* arr, int sz) 
{
	for (int i = 0; i < sz; i++)  
	{
		//向上调整建堆
		AdjustUp(arr, i);    //以i为调堆最后一个元素
	}
}

  • 168
    点赞
  • 113
    收藏
    觉得还不错? 一键收藏
  • 107
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论 107
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值