腾讯混元刚刚发布hunyuan3d 2.0版本,至强文生、图生3d模型最新整合包,效果再次震撼,省去繁琐安装,解压一键启动,6g N卡可玩。

下载地址在文末

Hunyuan3D 2.0,这是一种先进的大规模3D合成系统,用于生成高分辨率纹理3D资产。该系统包括两个基础组件:大规模形状生成模型Hunyuan3D-DiT和大规模纹理合成模型Hunyuan3D-Paint。形状生成模型基于可扩展的基于流的扩散变换器,旨在创建与给定条件图像正确对齐的几何形状,为下游应用奠定坚实的基础。纹理合成模型受益于强大的几何和扩散先验,可以为生成的或手工制作的网格生成高分辨率且充满活力的纹理贴图。此外,我们还构建了Hunyuan3D-Studio——一个多功能、用户友好的制作平台,可以简化3D资产的重新创建过程。它允许专业和业余用户有效地操纵甚至动画化他们的网格。我们系统地评估了我们的模型,结果表明Hunyuan3D 2.0在几何细节、条件对齐、纹理质量等方面优于以前的最先进模型,包括开源模型和闭源模型。

 文章图片以及信息来源于Release 2025/01/22 Hunyuan3D-2 Special · YanWenKun/Comfy3D-WinPortable · GitHub

Hunyuan3D 2.0

Hunyuan3D 2.0 采用两阶段生成流程,首先创建裸网格,然后合成该网格的纹理贴图。该策略可以有效地解决形状和纹理生成的困难,并且还为生成或手工制作的网格提供纹理化的灵活性。

效果 展示:

注意事项:所有的文件目录,都不要有中文文字和符号,包括软件的文件夹,使用到的图片名称等等都不要有中文,否则可能会报错。

项目建议使用英伟达显卡,运行显存建议大于等于6G,系统内存建议大于等于24G,这样速度会比较快一些,如果系统内存不够呢,可以手动调大虚拟内存

用法

  1. 下载并解压,启动EXE完毕后,会自动打开浏览器就 可以进行操作了

下载链接:

夸克网盘分享

### 部署腾讯混元3D模型 #### 一、环境准备 对于希望在本地环境中部署腾讯混元3D模型Hunyuan3D-1.0的用户来说,确保拥有合适的硬件和软件配置至关重要。该模型对计算资源有一定需求,建议使用配备有高性能GPU的工作站或服务器来运行此模型[^1]。 具体而言,在操作系统方面推荐Linux发行版如Ubuntu;Python版本应不低于3.8;CUDA Toolkit以及cuDNN库需按照所使用的NVIDIA GPU型号安装相应版本以支持深度学习框架PyTorch正常工作。此外还需要预先设置好pip工具以便后续安装其他必要的Python。 #### 二、获取源码与依赖项 访问项目官方GitHub页面下载最新稳定版代码仓库[Hunyuan3D-1 GitHub]。与此同时,AutoDL社区已经为开发者们提供了一个含了所有必需组件的Docker镜像,这可以极大地方便那些想要快速启动并测试模型的人士。通过访问指定链接https://www.codewithgpu.com/i/Tencent/Hunyuan3D-1/Hunyuan3D-1.0即可拉取到这个经过特别定制化的容器镜像文件。 如果选择不使用现成的Docker镜像,则需要手动构建环境: ```bash git clone --recursive https://github.com/YourRepoPathHere/hunyuan_3d.git cd hunyuan_3d conda create -n hunyuan python=3.8 source activate hunyuan pip install -r requirements.txt ``` 以上命令会克隆整个Git仓库至当前目录下,并创建一个新的Conda虚拟环境名为`hunyuan`,最后根据requirements.txt文档中的列表批量安装所需的Python第三方模块。 #### 三、加载预训练权重 完成上述准备工作之后,下一步就是从网络上或者其他途径获得已训练好的参数文件(.pth),并将它们放置于项目的适当位置等待调用。通常情况下这些权重会被保存在一个叫做checkpoints或者models这样的子文件夹里面。 #### 四、执行推理脚本 当一切就绪后就可以尝试跑一些简单的例子来看看效果如何了。进入examples目录找到对应的任务类型(比如text_to_image.py),修改其中涉及路径名的部分使其指向实际存在的数据集所在之处,接着就能直接运行它来进行预测操作啦! ```python import torch from model import build_model device = 'cuda' if torch.cuda.is_available() else 'cpu' model, preprocess = build_model(device=device) # 加载预训练模型 checkpoint_path = "./checkpoints/pretrained.pth" state_dict = torch.load(checkpoint_path,map_location=torch.device('cpu')) model.load_state_dict(state_dict) model.eval() # 这里假设有一个输入样本input_sample output = model(input_sample.to(device)) print(output.shape) ``` 这段代码展示了怎样实例化一个基于给定设备类型的模型对象,并从中读入之前提到过的`.pth`格式的参数表单,最终利用传入的数据作为输入向量得到输出结果。
评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值