腾讯 Hunyuan3D-2: 高分辨率3D 资产生成

腾讯 Hunyuan3D-2:高分辨率 3D 资产生成的突破

前言

在当今数字化时代,3D 资产生成技术正变得越来越重要。无论是游戏开发、影视制作还是虚拟现实领域,高质量的 3D 模型和纹理都是创造沉浸式体验的关键。然而,传统的 3D 资产制作往往需要大量的时间和专业技能。幸运的是,腾讯的 Hunyuan3D-2 项目为我们带来了新的希望,它通过大规模扩散模型实现了高分辨率 3D 资产的高效生成。

项目简介

Hunyuan3D-2 是腾讯推出的一个先进的大规模 3D 合成系统,旨在生成高分辨率的纹理化 3D 资产。该项目于 2025 年 1 月 21 日发布了推理代码和预训练模型,并通过其官方网站 Hunyuan3D Studio 提供了令人兴奋的 3D 生成体验。

核心架构

Hunyuan3D-2 采用了一个两阶段生成流程,首先创建一个裸网格,然后为该网格合成纹理贴图。这种策略有效地分离了形状和纹理生成的复杂性,并且为生成或手工制作的网格提供了纹理化的灵活性。

形状生成模型:Hunyuan3D-DiT

Hunyuan3D-DiT 是一个基于可扩展的流式扩散变换器的形状生成模型。它的目标是根据给定的条件图像生成合适的几何形状,为下游应用奠定坚实的基础。

纹理合成模型:Hunyuan3D-Paint

Hunyuan3D-Paint 利用强大的几何和扩散先验,为生成或手工制作的网格生成高分辨率且生动的纹理贴图。

性能表现

Hunyuan3D-2 在生成纹理化 3D 资产的质量和条件跟随能力方面超越了现有的开源和闭源 3D 生成方法。以下是其与其他模型的性能对比:

模型CMMD(⬇)FID_CLIP(⬇)FID(⬇)CLIP-score(⬆)
Top Open-source Model13.59154.639289.2870.787
Top Close-source Model13.60055.866305.9220.779
Top Close-source Model23.36849.744294.6280.806
Top Close-source Model33.21851.574295.6910.799
Hunyuan3D 2.03.19349.165282.4290.809

使用方法

安装依赖

首先,通过 Pytorch 官方网站安装 Pytorch,然后安装其他依赖项:

pip install -r requirements.txt
cd hy3dgen/texgen/custom_rasterizer
python3 setup.py install
cd hy3dgen/texgen/differentiable_renderer
bash compile_mesh_painter.sh

API 使用

Hunyuan3D-2 提供了一个类似 diffusers 的 API,用于使用形状生成模型 Hunyuan3D-DiT 和纹理合成模型 Hunyuan3D-Paint。

形状生成
from hy3dgen.shapegen import Hunyuan3DDiTFlowMatchingPipeline

pipeline = Hunyuan3DDiTFlowMatchingPipeline.from_pretrained('tencent/Hunyuan3D-2')
mesh = pipeline(image='assets/demo.png')[0]

生成的网格是一个 trimesh 对象,可以保存为 glb/obj(或其他格式)文件。

纹理合成
from hy3dgen.texgen import Hunyuan3DPaintPipeline
from hy3dgen.shapegen import Hunyuan3DDiTFlowMatchingPipeline

pipeline = Hunyuan3DDiTFlowMatchingPipeline.from_pretrained('tencent/Hunyuan3D-2')
mesh = pipeline(image='assets/demo.png')[0]

pipeline = Hunyuan3DPaintPipeline.from_pretrained('tencent/Hunyuan3D-2')
mesh = pipeline(mesh, image='assets/demo.png')

更多高级用法,如文本到 3D 和手工制作网格的纹理生成,请参考 minimal_demo.py。

Gradio 应用

云端镜像: CodeWithGPU | 能复现才是好算法

你还可以在自己的计算机上托管 Gradio 应用,或者直接访问

腾讯混元3D 以快速使用。

pip3 install gradio==3.39.0
python3 gradio_app.py

开源计划

Hunyuan3D-2 的开源计划包括:

  • 推理代码

  • 模型检查点

  • 技术报告

  • ComfyUI

  • TensorRT 版本

Hunyuan3D-2 为我们提供了一个强大的工具,用于高效生成高分辨率的 3D 资产。它的两阶段生成流程和灵活的 API 设计使其在 3D 资产生成领域具有巨大的潜力。无论你是专业开发者还是业余爱好者,Hunyuan3D-2 都能帮助你轻松实现 3D 创作的梦想。

相关链接: 



GitHub - Tencent/Hunyuan3D-2: High-Resolution 3D Assets Generation with Large Scale Hunyuan3D Diffusion Models.

### 关于 HunYuan 3D Version 2 的文档或使用指南 目前关于腾讯混元系列模型的公开资料主要集中在 HunYuan 3D-1.0 版本上[^1]。然而,对于 HunYuan 3D Version 2 (HunYuan 3D-2),尚未有官方发布的具体文档或详细的使用指南被广泛传播。以下是对可能涉及的内容以及基于现有版本推测的相关信息: #### 已知信息总结 1. **HunYuan 3D-1.0 功能概述** HunYuan 3D-1.0 是一个支持文本到 3D 和图像到 3D 生成功能的强大生成模型[^2]。它通过统一化的框架设计,在较短的时间内能够生成高质量的 3D 资产2. **技术背景与成本考量** 使用大规模模型进行三维生成的技术路线通常伴随着较高的计算资源需求。无论是神经辐射场 (NeRF) 还是其他形式的 3D 场景表示方法,这些模型都被认为是在当前领域中较为昂贵的选择之一[^3]。 3. **代码细节补充** 在一些具体的实现过程中,例如从文本到视频 (T2V) 或者图像到视频 (I2V) 的转换任务中,涉及到的关键参数如 `in_chans` 表明了输入数据结构的设计特点[^4]。这可能是未来版本进一步优化的方向之一。 #### 对 HunYuan 3D-2 的假设分析 尽管缺乏直接针对 HunYuan 3D-2 的描述性材料,可以合理猜测其改进方向如下: - 提升效率:减少运行时间和硬件消耗的同时保持甚至提高输出质量。 - 增强功能:扩展至更多模态间的转化能力,比如语音转 3D 形象等新型应用场景。 - 用户友好度增加:提供更简便易用的 API 接口和服务端解决方案以便开发者快速集成到自己的产品当中去。 由于上述内容均为推断性质的结果,并未得到实际验证,请密切关注腾讯官方团队后续发布的新消息来获取最权威准确的信息源。 ```python # 示例代码片段展示如何加载预训练权重文件(仅作示意用途) import torch from transformers import AutoModelForVisionTo3DGeneration, AutoFeatureExtractor model_name_or_path = "path/to/hunyuan_3d_v2" feature_extractor = AutoFeatureExtractor.from_pretrained(model_name_or_path) model = AutoModelForVisionTo3DGeneration.from_pretrained(model_name_or_path) image_input = feature_extractor(images=example_image, return_tensors="pt").pixel_values outputs = model(image_input) predicted_3d_model = outputs.reconstructed_3d_object ```
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

云樱梦海

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值