8、密码学关键概念与算法解析

密码学关键概念与算法解析

1. 雅可比符号

雅可比符号将勒让德符号推广到所有奇数。设 (n) 为一个正奇数,其素因数分解为 (n = p_1^{a_1}p_2^{a_2}\cdots p_k^{a_k}),其中 (p_1, \cdots, p_k) 是不同的素数,(x) 为整数。(x) 模 (n) 的雅可比符号等于 (x) 关于每个素数的勒让德符号的乘积:
(\left(\frac{x}{n}\right) = \left(\frac{x}{p_1}\right)^{a_1}\left(\frac{x}{p_2}\right)^{a_2}\cdots\left(\frac{x}{p_k}\right)^{a_k})
若 (n) 为素数,则雅可比符号与勒让德符号相同。通过二次互反律(由高斯证明),即使不知道 (n) 的素因数分解,也能高效计算雅可比符号。

2. 卡拉楚巴算法
  • 基本算法 :1962 年提出的卡拉楚巴算法(KA)用于多项式乘法。对于两个一次多项式 (A(x) = a_1x + a_0) 和 (B(x) = b_1x + b_0),引入辅助变量 (D_0 = a_0b_0),(D_1 = a_1b_1),(D_{0,1} = (a_0 + a_1)(b_0 + b_1)),则 (C(x) = A(x)B(x) = D_1x^2 + (D_{0,1} - D_0 - D_1)x + D_0)。该方法需三次乘法和四次加法,而传统方法需 (n^2) 次乘法和 ((n - 1)^2) 次加法((n = 2) 时为四次乘法和一次加法)。此算法也可用于整数乘法。
  • 推广
Matlab基于粒子群优化算法及鲁棒MPPT控制器提高光伏并网的效率内容概要:本文围绕Matlab在电力系统优化控制领域的应用展开,重点介绍了基于粒子群优化算法(PSO)和鲁棒MPPT控制器提升光伏并网效率的技术方案。通过Matlab代码实现,结合智能优化算法先进控制策略,对光伏发电系统的最大功率点跟踪进行优化,有效提高了系统在不同光照条件下的能量转换效率和并网稳定性。同时,文档还涵盖了多种电力系统应用场景,如微电网调度、储能配置、鲁棒控制等,展示了Matlab在科研复现工程仿真中的强大能力。; 适合人群:具备一定电力系统基础知识和Matlab编程能力的高校研究生、科研人员及从事新能源系统开发的工程师;尤其适合关注光伏并网技术、智能优化算法应用MPPT控制策略研究的专业人士。; 使用场景及目标:①利用粒子群算法优化光伏系统MPPT控制器参数,提升动态响应速度稳态精度;②研究鲁棒控制策略在光伏并网系统中的抗干扰能力;③复现已发表的高水平论文(如EI、SCI)中的仿真案例,支撑科研项目学术写作。; 阅读建议:建议结合文中提供的Matlab代码Simulink模型进行实践操作,重点关注算法实现细节系统参数设置,同时参考链接中的完整资源下载以获取更多复现实例,加深对优化算法控制系统设计的理解。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值