Leetcode-235. 二叉搜索树的最近公共祖先
给定一个二叉搜索树, 找到该树中两个指定节点的最近公共祖先。
百度百科中最近公共祖先的定义为:“对于有根树 T 的两个结点 p、q,最近公共祖先表示为一个结点 x,满足 x 是 p、q 的祖先且 x 的深度尽可能大(一个节点也可以是它自己的祖先)。”
例如,给定如下二叉搜索树: root = [6,2,8,0,4,7,9,null,null,3,5]
示例 1:
输入: root = [6,2,8,0,4,7,9,null,null,3,5], p = 2, q = 8
输出: 6
解释: 节点 2 和节点 8 的最近公共祖先是 6。
示例 2:
输入: root = [6,2,8,0,4,7,9,null,null,3,5], p = 2, q = 4
输出: 2
解释: 节点 2 和节点 4 的最近公共祖先是 2, 因为根据定义最近公共祖先节点可以为节点本身。
说明:
所有节点的值都是唯一的。
p、q 为不同节点且均存在于给定的二叉搜索树中。
思路:
根据二叉搜索树的性质来判断,p,q的公共祖先肯定满足:大于p并且小于q,因此可以按照这个条件依次遍历结点,若root结点是,则返回root,若root>q,则在其左边,否则在其右边找。
C++ code:
/**
* Definition for a binary tree node.
* struct TreeNode {
* int val;
* TreeNode *left;
* TreeNode *right;
* TreeNode(int x) : val(x), left(NULL), right(NULL) {}
* };
*/
class Solution {
public:
TreeNode* lowestCommonAncestor(TreeNode* root, TreeNode* p, TreeNode* q) {
//使得p保存val小的数值,q保存为val较大的数值
if(p->val > q->val){
swap(p, q);
}
//根据二叉搜索树的性质来判断,p,q的公共祖先肯定满足,大于p并且小于q,因此可以按照这个条件依次遍历结点,若root结点是,则返回root,若root>q,则在其左边,否则在其右边找。
while(root){
if(root->val >= p->val && root->val <= q->val){
return root;
}else if(root->val > q->val){
root = root->left;
}else{
root = root->right;
}
}
return root;
}
};