panads操作excel

本文介绍了基于Numpy的Python包pandas,它能高效解决数据分析任务,支持多种文件操作。阐述了pandas与Excel数据结构的对应关系,如DataFrame、Series和Index。还讲解了pandas读取Excel的方法,包括read_excel和read_table()的参数,以及创建Excel和常用操作。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

panads简介

pandas是基于Numpy创建的Python包,内置了大量标准函数,能够高效地解决数据分析数据处理和分析任务,pandas支持多种文件的操作,比如Excel,csv,json,txt 文件等,读取文件之后,就可以对数据进行各种清洗、分析操作了。

padas和excel中数据结构的对应关系

pandasexcel
DataFrame工作表(Worksheet)
Series列(Column)
index行号(row index)
Row行(Row)
NaN空单元格(empty cell)

DataFrame

Pandas 中的 DataFrame 类似于 Excel 工作表,虽然 Excel 工作簿可以包含多个工作表,但 Pandas DataFrame 独立存在的。

Series

序列是表示 DataFrame 的一列的数据结构,类似于引用电子表格的列。

Index

每个 DataFrame 和 Series 都有一个索引,它们是数据行上的标签。在 Pandas 中,如果未指定索引,则默认使用 RangeIndex(第一行 = 0,第二行 = 1,依此类推),类似于电子表格中的每行开始的数字。 在 Pandas 中,索引可以设置为一个(或多个)唯一值,这就像在工作表中有一列用作行标识符一样,这些索引值可用于引用行。索引值是持久的,所以对 DataFrame 中的行重新排序,特定行的标签不会改变。

pandas读取excel

pandas读取文件之后,将内容存储为DataFrame,然后就可以调用内置的各种函数进行分析处理。

pandas对xlrd等模块进行了封装,可以很方便的处理excel文件,支持xls和xlsx等格式,需要提前安装模块pip install openpyxl

read_excel

pandas.read_excel(filename, sep, header,encoding)

参数解释

  • **filename:**文件路径,可以设置为绝对路径或相对路径
  • **sep:**分隔符,常用的有逗号 , 分隔、\t 分隔,默认逗号分隔,read_table默认是’\t’(也就是tab)切割数据集的
  • **header:**指定表头,即列名,默认第一行,header = None, 没有表头,全部为数据内容
  • **encoding:**文件编码方式,不设置此选项, Pandas 默认使用 UTF-8 来解码。
  • index_col ,指定索引对应的列为数据框的行标签,默认 Pandas 会从 0、1、2、3 做自然排序分配给各条记录。
  • 通过names=[‘a’,‘b’,‘c’]可以自己设置列标题

read_table()

可以读取Excel中的数据表,并指定分隔符(如制表符或逗号)。

pd.read_table('data.xlsx', sheet_name='Sheet1', delimiter='\t', header=0)
  • 'data.xlsx’是Excel文件的路径。
  • sheet_name='Sheet1’表示要读取的工作表名为’Sheet1’。
  • delimiter='\t’指定数据表中的分隔符为制表符(‘\t’)。
  • header=0表示将文件中的第0行作为列名。

例子

请添加图片描述

import pandas as pd
result = pd.read_excel(r"E:\2021竞赛题目列表(本科).xlsx")
print(result)

创建Excel

import pandas as pd

# 创建数据框
data = {'Name': ['Tom', 'Jerry', 'Mickey', 'Donald'],
        'Age': [20, 25, 22, 28],
        'Gender': ['M', 'M', 'M', 'M']}
df = pd.DataFrame(data)


# 保存数据框到 Excel 文件
df.to_excel('example.xlsx', index=False)

效果
请添加图片描述

常用操作合集

请添加图片描述

### 使用 Pandas 进行数据处理 在 Python 实验十五中,Pandas 数据处理是一个重要的主题。为了更好地理解如何利用 Pandas 处理数据,下面提供一些关键概念和示例代码。 #### 创建并操作 DataFrame 和 Series Pandas 主要提供了两种核心数据结构:`Series` 和 `DataFrame`[^2]。其中: - **Series** 类似于一维数组对象,由一组数据及其关联的索引构成; - **DataFrame** 则是一种二维表格形式的数据结构,具有行列索引,并支持不同类型的列。 创建简单的 `DataFrame` 可以如下所示: ```python import pandas as pd data = {'Name': ['Alice', 'Bob', 'Charlie'], 'Age': [25, 30, 35], 'City': ['New York', 'Los Angeles', 'Chicago']} df = pd.DataFrame(data) print(df) ``` #### 字符串操作方法 对于文本数据处理而言,Pandas 提供了一系列强大而灵活的方法来执行诸如大小写转换、分割、替换等常见任务[^1]。例如,将某一列中的所有字符串转为大写字母可按此方式实现: ```python df['Name_Upper'] = df['Name'].str.upper() print(df) ``` #### 导入导出功能 当涉及到文件读取与保存时,Pandas 支持多种格式的操作,比如 CSV 或 Excel 文件。这里展示了一个例子,说明怎样把一个 `DataFrame` 对象存入一个新的 Excel 文件里去[^3]: ```python result_df.to_excel('output.xlsx', index=False) ``` #### 安装 Pandas 库 如果尚未安装 Pandas 库,则可以通过 pip 工具来进行安装。注意 URL 中存在拼写错误,“panads”应更正为“pandas”。正确的命令应该是这样: ```bash pip3 install -i https://pypi.doubanio.com/simple/ pandas ```
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

过去日记

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值