【算法&数据结构体系篇class24】:滑动窗口技巧

本文介绍了滑动窗口的概念,强调了其在数组和字符串操作中的应用。通过讲解如何利用单调双端队列高效地维护窗口内的最大值和最小值,展示了滑动窗口在解决实际问题中的价值。文章通过具体的题目实例,如找滑动窗口最大值、满足特定条件的子数组数量和最小货币组合问题,进一步阐述了滑动窗口方法的运用。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

一、滑动窗口是什么

滑动窗口是一种想象出来的数据结构:

滑动窗口有左边界L和有边界R

在数组或者字符串或者一个序列上,记为S,窗口就是S[L..R]这一部分

L往右滑意味着一个样本出了窗口,R往右滑意味着一个样本进了窗口

L和R都只能往右滑

二、滑动内最大值和最小值的更新结构

窗口不管L还是R滑动之后,都会让窗口呈现新状况,

如何能够更快的得到窗口当前状况下的最大值和最小值?

最好平均下来复杂度能做到O(1)

利用单调双端队列!

三、题目一

假设一个固定大小为W的窗口,依次划过arr

返回每一次滑出状况的最大值

例如,arr = [4,3,5,4,3,3,6,7], W = 3

返回:[5,5,5,4,6,7]

package class24;

import java.util.LinkedList;

/**
 * 假设一个固定大小为W的窗口,依次划过arr,
 * 返回每一次滑出状况的最大值
 * 例如,arr = [4,3,5,4,3,3,6,7], W = 3
 * 返回:[5,5,5,4,6,7]
 */
public class SlidingWindowMaxArray {

    //滑动窗口技巧   定义一个双端队列linkedlist辅助滑动弹出元素加入元素 保存数组元素的下标
    public static int[] getMaxWindow(int[] arr, int w){
        //边界判断 如果数组空 窗口大小0  窗口大小大于数组 都是无效的 返回空
        if(arr == null || w < 1 || arr.length < w) return null;

        //定义一个双端队列 qmax  从大到小排序 头部大 尾部小 保存的是数组的元素索引 不是元素数值 因为根据滑动要把溢出的元素弹出 需要获取到索引
        LinkedList<Integer> qmax = new LinkedList<>();

        //定义一个数组 保存结果 每个窗口 3个元素中的最大值。 这里数组的长度是固定的
        //数组长度8  窗口w=3 那么第一个窗口就是来到 4,3,5 返回5,第二个窗口时3,5,4 返回5,
        // 第三个窗口 5,4,3 返回5...依次类推最后结果是[5,5,5,4,6,7] 长度6 即arr长度8 - w3 +1 =6
        int[] res = new int[arr.length - w + 1];

        int index =0;  //定义结果集的下标从左到右
        //从左到右开始遍历 直到遍历完整个数组
        for(int r = 0; r < arr.length; r++){
            //题意要求每个窗口返回其最大值 所以我们元素进队列,需要把前面小于等于的值都弹出来
            //元素索引入队列前  需要判断 qmax非空时,如果当前数组arr[r]值大于等于队列尾部,
            //就将尾部索引值弹出,直到队列前面的元素值大于当前arr[r]值即可
            while(!qmax.isEmpty() && arr[qmax.peekLast()] <= arr[r]){
                qmax.pollLast();
            }
            //队列中弹出后,就可以将当前r索引入队列
            qmax.addLast(r);

            //判断当前队列头部是否需要弹出 一个窗口3长度 当r来到3时,窗口值就 1,2,3 就需要将r-w=0位置弹出
            //如果r=5 那么窗口就是 3,4,5 队列中就需要将小于3的索引都去掉 因为要确保队列是保持着当前窗口最大值索引在队列头部的 超过了窗口的就要弹出
            if(qmax.peekFirst() == r - w){
                qmax.pollFirst();   //队列头部最大值的索引值如果不在当前窗口内 就需要弹出 避免影响当前窗口实际的最大值索引
            }

            //判断什么时候开始填入结果集,当我们r位置到达w窗口3个值长度时 就是第一个窗口的值需要填入了 0,1,2 也就是r=2时
            if (r  >= w - 1 ){
                //也就是r>=2 后面开始每个值对应一个窗口 窗口最大值就是当前队列的头部 头部保持最大值的索引
                res[index++] = arr[qmax.peekFirst()];
            }
        }
        return res;
    }

    // 暴力的对数器方法
    public static int[] right(int[] arr, int w) {
        if (arr == null || w < 1 || arr.length < w) {
            return null;
        }
        int N = arr.length;
        int[] res = new int[N - w + 1];
        int index = 0;
        int L = 0;
        int R = w - 1;
        while (R < N) {
            int max = arr[L];
            for (int i = L + 1; i <= R; i++) {
                max = Math.max(max, arr[i]);

            }
            res[index++] = max;
            L++;
            R++;
        }
        return res;
    }


    // for test
    public static int[] generateRandomArray(int maxSize, int maxValue) {
        int[] arr = new int[(int) ((maxSize + 1) * Math.random())];
        for (int i = 0; i < arr.length; i++) {
            arr[i] = (int) (Math.random() * (maxValue + 1));
        }
        return arr;
    }

    // for test
    public static boolean isEqual(int[] arr1, int[] arr2) {
        if ((arr1 == null && arr2 != null) || (arr1 != null && arr2 == null)) {
            return false;
        }
        if (arr1 == null && arr2 == null) {
            return true;
        }
        if (arr1.length != arr2.length) {
            return false;
        }
        for (int i = 0; i < arr1.length; i++
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值