DNN网络结构设计浅析之GoogLeNet

欢迎转载,请注明出处:http://blog.csdn.net/stund/article/details/73611734

1、背景简介

自从2012年的AlexNet 深度神经网络在ImageNet 竞赛中夺冠后,DNN迅速席卷整个CV 领域。

介绍一下ImageNet: ImageNet 是一个计算机视觉系统识别项目数据库。是美国斯坦福的计算机科学家李菲菲团队组织建成的。包括海量的高质量图像数据集建设,以及基于该数据集设置的比赛 ILSVRC(ImageNet Large Scale Visual Recognition Challenge),2016的ILSVRC竞赛分为五大部分,包括:目标检测、目标定位、视频中目标物体检测、场景分类、场景分析。其中的目标定位图像分类比赛为:1000类图像分类问题,训练数据集126万张图像,验证集5万张,测试集10万张(标注未公布)。评价标准采用top-5错误率,即对一张图像预测5个类别,只要有一个和人工标注类别相同就算对,否则算错。

 

需要进一步优化DNN的效果时,一般来说,提升网络性能最直接的办法就是增加网络深度和宽度,这也就意味着巨量的参数(大到数十亿级别)。但是,巨量参数容易产生过拟合也会大大增加计算量。

 

解决上述两个缺点的方法是将全连接甚至一般的卷积都转化为稀疏连接。一方面现实生物神经系统的连接也是稀疏的,另一方面对于大规模稀疏的神经网络,可以通过分析激活值的统计特性和对高度相关的输出进行聚类来逐层构建出一个最优网络。这点表明臃肿的稀疏网络可能被不失性能地简化。

用这种方式优化得到的深度网络由多深?接下来探索一下真实的GoogLeNet -深度网络结构,同时理解蕴含在深度结构背后的思想。

2、GoogLeNet 结构简介

2.1 GoogLeNet 结构

先看看整个网络的结构:

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值