【5070TI启动Stable Diffusion时报pytorch capability sm_120 is not compatible ...的解决方案】

5070TI启动Stable Diffusion时报pytorch capability sm_120 is not compatible with the current PyTorch installtion…的问题
首先我要感谢CSDN作者:ssjjxingxin这里附原文章链接,我就是跟着这篇文章解决自己的问题的,我也做了笔记,大家可以跟着步骤直接操作。
新的显卡今天刚到,打开SD之后居然不能生图??查看后台代码如下:
在这里插入图片描述

问题原因

在网上搜了之后,原来是PyTorch版本和CUDA版本不匹配
当使用比较新的显卡(比如NVIDIA GeForce RTX 50系列显卡)时,由于显卡的架构比较新,可能旧版本的pytorch库没有支持到。这时候就会出现capability sm_120 is not compatible的问题,同时根据输出可以看到 The current PyTorch install supports CUDA capabilities sm_37 sm_50 sm_60 sm_70 sm_75…当前pytorch只能支持上面几种架构

解决方法

我先登陆了绘世作者提供的Pytorch网站,并尝试在命令提示符中运行代码,但是启动SD还是无法生图,SD启动器还是会提示:在这里插入图片描述

在这里插入图片描述
经过查询资料是因为PyTorch版本和CUDA版本不匹配,要解决上述问题,需要下载安装3个东西
1.安装cudaCuda安装链接
2.pytorch安装清华镜像源
3.tensorRT安装清华镜像源

下面是具体解决步骤:
步骤1:【下载并安装Cuda】
下载后直接安装即可
步骤2:【命令提示符中查看版本】以管理员身份运行命令提示符,输入nvidia-smi,查看自己的CUDA Version,我这里是12.8,同样在命令提示符中输入python查看电脑的python版本,我这里是3.8
在这里插入图片描述
步骤3:【下载Pytorch包】根据以上信息确定自己要安装的pytorch包,因为网络原因,我选择是从清华镜像源选择合适版本下载到本地,从本地安装。进入网站下载:清华镜像源
版本说明
我下载的是pytorch-2.1.0-py3.8_cuda12.1_cudnn8_0.tar.bz2(如果你是50系显卡遇到问题也可直接复制搜索和我下载一样的也可以)上图我Ctrl+f搜索的关键词是-py3.8_cuda12.,可以看到搜索结果有12个,下载其中任意一个都可以(cuda小于12.8都可以)
步骤4:【下载torchvision包】步骤3中我下载的pytorch版本是2.1.0,对应应该下载Torchvision的版本是0.16.0,到镜像源网站搜索下载:清华镜像源
我这里搜索下载的是torchvision-0.16.0-py311_cu121.tar.bz2(如果你是50系显卡遇到问题也可直接复制搜索和我下载一样的也可以)
对应版本
我下载的版本
步骤5:两个文件下载到本地后,输入下列代码安装即可:

#安装pytorch
conda install --use-local ~\pytorch-2.1.0-py3.8_cuda12.1_cudnn8_0.tar.bz2
# 安装torchvision
conda install --use-local ~\torchvision-0.16.0-py38_cu121.tar.bz2

注意上述代码中"~"是你下载两个文件的路径,例如我下载到了I盘根目录下,代码即为

#安装pytorch
conda install --use-local I:\pytorch-2.1.0-py3.8_cuda12.1_cudnn8_0.tar.bz2
# 安装torchvision
conda install --use-local I:\torchvision-0.16.0-py38_cu121.tar.bz2

下载路径
根据上述步骤,解决了新显卡不能使用SD生图的问题,再次感谢作者ssjjxingxin慷慨分享!!
附:成功生图:
开始起飞哈哈

04-03
关于NVIDIA GeForce GTX 5070 Ti的具体规格和性能,目前并没有官方发布的GTX 5070 Ti型号。可能您指的是其他类似的显卡型号,例如RTX 2070 Ti或GTX 1670 Ti等。然而,在已有的资料中并未提及名为“GTX 5070 Ti”的产品线[^1]。 以下是与之接近的一些显卡的信息: ### 类似显卡的规格对比 #### NVIDIA GeForce GTX 1660 Ti 如果考虑一款定位相近的产品,可以参考GTX 1660 Ti的表现。它是一款针对主流市场的高性能游戏显卡,能够流畅运行大多数现代游戏于1080p分辨率下,并提供较高的帧率表现[^3]。 - **核心架构**: Turing - **CUDA Cores**: 1536 - **基础频率**: ~1500 MHz - **加速频率**: ~1770 MHz - **显存容量**: 6GB GDDR6 - **显存位宽**: 192-bit 此款显卡适合追求性价比的游戏用户群体,尤其对于预算有限但希望获得良好体验的人来说是一个不错的选择。 ```python # 示例代码展示如何查询GPU基本信息(伪代码) def get_gpu_info(model_name): gpu_specs = { 'gtx_1660_ti': {'architecture': 'Turing', 'cuda_cores': 1536}, # 更多模型... } return gpu_specs.get(model_name.lower(), {}) print(get_gpu_info('GTX 1660 Ti')) ``` #### NVIDIA A100 Tensor Core GPU 虽然A100并非面向消费级市场设计,但它代表了当前NVIDIA最先进的数据中心解决方案之一。其强大的计算能力和高效的能源利用率使其成为人工智能训练和其他高负载任务的理想选择[^4]。 - **制程工艺**: 7nm - **晶体管数量**: 超过540亿个 - **内存带宽**: 高达1.6TB/s 尽管如此,这类高端设备通常不适用于个人用途或者一般性的图形处理需求。 --- ### 总结 由于不存在确切命名为"GTX 5070 Ti"的实际硬件实例,上述介绍仅能通过推测关联至某些特定系列来满足您的请求。如果您确实指代另一具体版本号,请进一步澄清以便获取更精准的数据支持。
评论 12
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值