5070TI启动Stable Diffusion时报pytorch capability sm_120 is not compatible with the current PyTorch installtion…的问题
首先我要感谢CSDN作者:ssjjxingxin这里附原文章链接,我就是跟着这篇文章解决自己的问题的,我也做了笔记,大家可以跟着步骤直接操作。
新的显卡今天刚到,打开SD之后居然不能生图??查看后台代码如下:
问题原因
在网上搜了之后,原来是PyTorch版本和CUDA版本不匹配
当使用比较新的显卡(比如NVIDIA GeForce RTX 50系列显卡)时,由于显卡的架构比较新,可能旧版本的pytorch库没有支持到。这时候就会出现capability sm_120 is not compatible的问题,同时根据输出可以看到 The current PyTorch install supports CUDA capabilities sm_37 sm_50 sm_60 sm_70 sm_75…当前pytorch只能支持上面几种架构
解决方法
我先登陆了绘世作者提供的Pytorch网站,并尝试在命令提示符中运行代码,但是启动SD还是无法生图,SD启动器还是会提示:
经过查询资料是因为PyTorch版本和CUDA版本不匹配,要解决上述问题,需要下载安装3个东西
1.安装cudaCuda安装链接
2.pytorch安装清华镜像源
3.tensorRT安装清华镜像源
下面是具体解决步骤:
步骤1:【下载并安装Cuda】
步骤2:【命令提示符中查看版本】以管理员身份运行命令提示符,输入nvidia-smi
,查看自己的CUDA Version,我这里是12.8,同样在命令提示符中输入python
查看电脑的python版本,我这里是3.8
步骤3:【下载Pytorch包】根据以上信息确定自己要安装的pytorch包,因为网络原因,我选择是从清华镜像源选择合适版本下载到本地,从本地安装。进入网站下载:清华镜像源
我下载的是pytorch-2.1.0-py3.8_cuda12.1_cudnn8_0.tar.bz2
(如果你是50系显卡遇到问题也可直接复制搜索和我下载一样的也可以)上图我Ctrl+f搜索的关键词是-py3.8_cuda12.
,可以看到搜索结果有12个,下载其中任意一个都可以(cuda小于12.8都可以)
步骤4:【下载torchvision包】步骤3中我下载的pytorch版本是2.1.0,对应应该下载Torchvision的版本是0.16.0,到镜像源网站搜索下载:清华镜像源
我这里搜索下载的是torchvision-0.16.0-py311_cu121.tar.bz2
(如果你是50系显卡遇到问题也可直接复制搜索和我下载一样的也可以)
步骤5:两个文件下载到本地后,输入下列代码安装即可:
#安装pytorch
conda install --use-local ~\pytorch-2.1.0-py3.8_cuda12.1_cudnn8_0.tar.bz2
# 安装torchvision
conda install --use-local ~\torchvision-0.16.0-py38_cu121.tar.bz2
注意上述代码中"~"是你下载两个文件的路径,例如我下载到了I盘根目录下,代码即为
#安装pytorch
conda install --use-local I:\pytorch-2.1.0-py3.8_cuda12.1_cudnn8_0.tar.bz2
# 安装torchvision
conda install --use-local I:\torchvision-0.16.0-py38_cu121.tar.bz2
根据上述步骤,解决了新显卡不能使用SD生图的问题,再次感谢作者ssjjxingxin慷慨分享!!
附:成功生图: