1 有限元法基本思想
有限元法是在连续体上直接进行近似计算的一种数值方法,其基本思想通过下面的例子来说明。图1简答说明了早期数学上求解圆面积的近似方法。首先将连续的圆分割成一些三角形,求出每个三角形的面积,再将每个小三角形面积相加,即可得到圆面积的近似值。前面是“分”的过程,后面是“合”的过程。之所以要分,是因为三角形面积容易求得。这样简单的一分一合,就很容易求出圆面积的近似值。体现了有限元法的基本思想,即“拆整为零,集零为整”。
“拆整为零”即“分”的过程,具体包括
1)离散化
将连续的求解区域离散为有限个部分的集合,并认为各部分只通过有线个点连接起来。例如图2,可假想连续体(a)由许多小部件(b)组成,这些规则或不规则的小部分成为单元(element)。单元之间只通过有限个点连接起来,如(c)所示,单元①与单元②只在1、2两点相连,这些连接点称为节点(node)。这一过程称有限元离散化过程。