matlab解常微分方程常用数值解法1:前向欧拉法和改进的欧拉法

总结和记录一下matlab求解常微分方程常用的数值解法,本文先从欧拉法和改进的欧拉法讲起。

d x d t = f ( x , t ) , x ( t 0 ) = x 0 \frac{d x}{d t}=f(x, t), \quad x\left(t_{0}\right)=x_{0} dtdx=f(x,t),x(t0)=x0

1. 前向欧拉法

前向欧拉法使用了泰勒展开的第一项线性项逼近。

x ( t 0 + h ) = x ( t 0 ) + h x ′ ( t 0 ) + 1 2 x ′ ′ ( ξ ) h 2 , t 0 < ξ < t 0 + h x\left(t_{0}+h\right)=x\left(t_{0}\right)+h x^{\prime}\left(t_{0}\right)+\frac{1}{2} x^{\prime \prime}(\xi) h^{2}, \quad t_{0}<\xi<t_{0}+h x(t0+h)=x(t0)+hx(t0)+21x′′(ξ)h2,t0<ξ<t0+h

x k + 1 = x k + h x k ′ + O ( h 2 ) = x k + h f ( x k , t k ) + O ( h 2 ) x_{k+1}=x_{k}+h x'_k+O\left(h^{2}\right)=x_{k}+h f\left(x_{k}, t_{k}\right)+O\left(h^{2}\right) xk+1=xk+hxk+O(h2)=xk+hf(xk,tk)+O(h2)

2. 改进的欧拉法

在原来前向欧拉法的基础上泰勒展开使用了前面两项:
x k + 1 = x k + h x k ′ + 1 2 h 2 x k ′ ′ + O ( h 3 ) x_{k+1}=x_{k}+h x^{\prime}_k+\frac{1}{2} h^{2} x_{k}^{\prime \prime}+O\left(h^{3}\right) xk+1=xk+hxk+21h2xk′′+O(h3)

这里使用:

x k ′ ′ = x k + 1 ′ − x k ′ h x_{k}^{\prime \prime}=\frac{x_{k+1}^{\prime}-x_{k}^{\prime}}{h} xk′′=hxk+1xk

于是我们有:

x k + 1 = x k + h 2 ( x k ′ + x k + 1 ′ ) + O ( h 3 ) x_{k+1}=x_{k}+\frac{h}{2}\left(x_{k}^{\prime}+x_{k+1}^{\prime}\right)+O\left(h^{3}\right) xk+1=xk+2h(xk+xk+1)+O(h3)

也就是:

x k + 1 = x k + h 2 [ f ( x k , t k ) + f ( x k + 1 , t k + 1 ) ] + O ( h 3 ) x_{k+1}=x_{k}+\frac{h}{2}\left[f\left(x_{k}, t_{k}\right)+f\left(x_{k+1}, t_{k+1}\right)\right]+O\left(h^{3}\right) xk+1=xk+2h[f(xk,tk)+f(xk+1,tk+1)]+O(h3)

我们怎么计算 f ( x k + 1 , t k + 1 ) f(x_{k+1},t_{k+1}) f(xk+1,tk+1)呢,因为我们还不知道 x k + 1 x_{k+1} xk+1

对比前向欧拉法,改进欧拉法的右边不使用 x k + 1 x_{k+1} xk+1(我们还不知道),但是我们可以用前向欧拉法计算的 x k + h f ( x k , t k ) x_{k}+h f\left(x_{k}, t_{k}\right) xk+hf(xk,tk)来代替 x k + 1 x_{k+1} xk+1,于是我们有
x k + 1 = x k + 1 2 ( k 1 + k 2 ) + O ( h 3 ) , 其中: k 1 = h f ( x k , t k ) , k 2 = h f ( x k + h , t k + k 1 ) x_{k+1}=x_{k}+\frac{1}{2}\left(k_{1}+k_{2}\right)+O\left(h^{3}\right), \\\text{其中:}k_{1}=h f\left(x_{k}, t_{k}\right), k_{2}=h f\left(x_{k}+h, t_{k}+k_{1}\right) xk+1=xk+21(k1+k2)+O(h3),其中:k1=hf(xk,tk),k2=hf(xk+h,tk+k1)

对比一下前向欧拉法:

x k + 1 = x k + k 1 + O ( h 2 ) , k 1 = h f ( x k , t k ) x_{k+1}=x_{k}+k_{1}+O\left(h^{2}\right), \quad k_{1}=h f\left(x_{k},t_{k} \right) xk+1=xk+k1+O(h2),k1=hf(xk,tk)

例子

x ′ = x + t , x ( 0 ) = 1 x^{\prime}=x+t, \quad x(0)=1 x=x+t,x(0)=1

clc
clear

% 测试三个不同的步长
test_times = 3;
% 保存时间、差分时间和步长
h_res=ones(1,test_times);
t_res=cell(1,test_times);%时间
tplot_res=cell(1,test_times);%差分的时间,比时间长度少1
% 保存两种数值方法和解析解的计算结果
x_euler_res=cell(1,test_times);
x_modified_res=cell(1,test_times);
x_exact_res=cell(1,test_times);
% 保存误差
diff1_res=cell(1,test_times);
diff2_res=cell(1,test_times);

for i = 1:test_times
% 设置步长间隔和步长数
	h = 1/10^i; n = 10/h;
	% 设置初始条件
	t=zeros(n+1,1); t(1) = 0;
	x_euler=zeros(n+1,1); x_euler(1) = 1;
	x_modified=zeros(n+1,1); x_modified(1) = 1;
	x_exact=zeros(n+1,1); x_exact(1) = 1;
	% 设置前向欧拉法和改进欧拉法误差存放向量(和精确解比较)
	diff1 = zeros(n,1); diff2 = zeros(n,1); tplot = zeros(n,1);
	% 定义微分方程
	f = inline('xx+tt','tt','xx');
	for k = 1:n
		t(k+1) = t(k) + h;
		% 计算解析解
		x_exact(k+1) = 2*exp(t(k+1)) - t(k+1) - 1;
		% 使用前向欧拉法计算
		k1 = h * f(t(k),x_euler(k));
		x_euler(k+1) = x_euler(k) + k1;
		tplot(k) = t(k+1);
		diff1(k) = x_euler(k+1) - x_exact(k+1);
		diff1(k) = abs(diff1(k) / x_exact(k+1));
		% 使用改进欧拉法计算
		k1 = h * f(t(k),x_modified(k));
		k2 = h * f(t(k+1),x_modified(k)+k1);
		x_modified(k+1) = x_modified(k) + 0.5*(k1+k2);
		diff2(k) = x_modified(k+1) - x_exact(k+1);
		diff2(k) = abs(diff2(k) / x_exact(k+1));
	end
	diff1_res{i}=diff1;
	diff2_res{i}=diff2;
	tplot_res{i}=tplot;
	h_res(i)=h;
	x_euler_res{i}=x_euler;
	x_modified_res{i}=x_modified;
	x_exact_res{i}=x_exact;
	t_res{i}=t;
end

figure
% 不同步长下的解析解、前向欧拉法和改进欧拉法的结果
for i=1:test_times
	subplot(2,2,i)
	plot(t_res{i},x_exact_res{i},'k-',t_res{i},x_euler_res{i},'b--',t_res{i},x_modified_res{i},'r:')
	xlabel('t','Fontsize',18)
	ylabel('x','Fontsize',18)
	legend({'Analytical method','Euler method','modified Euler method'},'Location','best')
	legend boxoff;
	title(['h = ',num2str(h_res(i))]);
end

% 相对误差图
subplot(2,2,4)
for i=1:test_times
	semilogy(tplot_res{i},diff1_res{i},'b-',tplot_res{i},diff2_res{i},'r:')
	hold on
	num1 = 0.2*10/h_res(i); num2 = 0.8*10/h_res(i);
	text(3,diff1_res{i}(num1),['h = ',num2str(h_res(i))],'Fontsize',12,...
	'HorizontalAlignment','right',...
	'VerticalAlignment','bottom')
	text(9,diff2_res{i}(num2),['h = ',num2str(h_res(i))],'Fontsize',12,...
	'HorizontalAlignment','right',...
	'VerticalAlignment','bottom')
end
xlabel('t','Fontsize',18)
ylabel('|relative error|','Fontsize',18)
legend({'Euler method','modified Euler method'},'Location','best')
title('Two Euler method''s relative error')
legend boxoff;

我们对各个不同的步长进行了比较,并比较了它们的误差,发现改进的欧拉法要比前向欧拉法的精度更高。随着步长的变小,误差也在变小。

在这里插入图片描述

  • 4
    点赞
  • 24
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
好的,我了您的问题。常微分方程数值是一个很常见的问题,MATLAB提供了很多内置函数来决这个问题。其中,欧拉法改进欧拉法和四阶龙格库塔方法是常用数值解法。下面我会给您简要介绍一下这几种方法在MATLAB中的实现。 首先,我们需要定义一个函数来描述我们要决的常微分方程。例如,我们要求y'=f(t,y),我们可以在MATLAB中定义一个函数如下: ```matlab function dydt = myode(t,y) dydt = f(t,y); % f为描述y'的函数 end ``` 接下来,我们可以使用MATLAB的内置函数来求常微分方程。其中,欧拉法可以使用odeEuler函数实现,代码如下: ```matlab y0 = y(1); % 初始值 t0 = 0; % 初始时间 tf = 10; % 求的终止时间 h = 0.1; % 步长 tspan = t0:h:tf; % 时间区间 y = zeros(length(tspan),1); % 存储 y(1) = y0; for i = 1:length(tspan)-1 y(i+1) = y(i) + h*myode(tspan(i),y(i)); end ``` 改进欧拉法可以使用odeHeun函数实现,代码如下: ```matlab y0 = y(1); % 初始值 t0 = 0; % 初始时间 tf = 10; % 求的终止时间 h = 0.1; % 步长 tspan = t0:h:tf; % 时间区间 y = zeros(length(tspan),1); % 存储 y(1) = y0; for i = 1:length(tspan)-1 k1 = myode(tspan(i),y(i)); k2 = myode(tspan(i+1),y(i)+h*k1); y(i+1) = y(i) + h/2*(k1+k2); end ``` 四阶龙格库塔方法可以使用ode45函数实现,代码如下: ```matlab y0 = y(1); % 初始值 t0 = 0; % 初始时间 tf = 10; % 求的终止时间 [t,y] = ode45(@myode,[t0,tf],y0); ``` 以上就是常微分方程数值欧拉matlab的简要介绍,希望对您有所帮助。

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值