pytorch教程龙曲良31-35

本文深入探讨了激活函数softmax在多分类问题中的作用,强调其拉大类间差距的能力。同时,详细介绍了单层感知机的梯度推导过程,以及在损失函数(loss)上的应用,通过链式法则进行参数更新以逼近期望的输出。此外,解释了在反向传播中,只有当节点匹配时(loss对w的偏导)才会对误差有影响。最后,讨论了多层感知机(MLP)的反向传播原理,它是深度学习模型训练的关键步骤。
摘要由CSDN通过智能技术生成

31激活函数与Loss的梯度3

softmax
概率0-1,且所有所属结点的概率和为1,用softmax适合多分类,且把之间的差距拉大,本来2.0与1.0差两倍,现在0.7与0.2差3.5倍

在这里插入图片描述
求的是pi对aj的偏导,当i=j
在这里插入图片描述
i!=j
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

32感知机的梯度推导1

在这里插入图片描述
x上标0下标n,上标0表示第0层,下标n表示第n个x
w上标1下标ij,上标1表示第一层i表示连接上一层的xi,下标j表示连接本层的j号结点
x上标1下标0,上标1表示第1层的,下标0表示第0号结点,激活后变O
O上标1下标0,上标1表示第1层的,下标0表示第0号结点
因为是单层感知机,所以O只有一个

上标表示层号,下标表示本层的结点序号
loss=求和(O-t)**2 即(pred-y)**2

在这里插入图片描述

链式法则
在这里插入图片描述
单层感知机在这里插入图片描述
例子采用10号结点的输入
这里先求出loss对w的梯度
之后可以利用公式w’=w-lr*loss对w的梯度不断更新w使得xw趋近期望的y
在这里插入图片描述

33感知机的梯度推导2

共有N*M次连接
Wjk就是本层j号结点到k号结点的连接

在这里插入图片描述
对loss(error)对wjk的求导当j=k的时候才对E对wjk的求导有影响,j!=k没有影响都是0,所以可以把求和符号去掉
在这里插入图片描述
这条边上的权值输出关系只和这条边上的输入结点xj^0 和输出结点Ok^1 有关(这里多看几遍)
在这里插入图片描述
在这里插入图片描述

34链式法则

在这里插入图片描述
链式法则在这里插入图片描述
像跳板一样,逐一相乘再求解

在这里插入图片描述

35MLP反向传播

(多看几遍)

在这里插入图片描述
多层感知机在这里插入图片描述

在这里插入图片描述

在这里插入图片描述

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

在这里插入图片描述

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值