31激活函数与Loss的梯度3
softmax
概率0-1,且所有所属结点的概率和为1,用softmax适合多分类,且把之间的差距拉大,本来2.0与1.0差两倍,现在0.7与0.2差3.5倍
求的是pi对aj的偏导,当i=j
i!=j
32感知机的梯度推导1
x上标0下标n,上标0表示第0层,下标n表示第n个x
w上标1下标ij,上标1表示第一层i表示连接上一层的xi,下标j表示连接本层的j号结点
x上标1下标0,上标1表示第1层的,下标0表示第0号结点,激活后变O
O上标1下标0,上标1表示第1层的,下标0表示第0号结点
因为是单层感知机,所以O只有一个
上标表示层号,下标表示本层的结点序号
loss=求和(O-t)**2 即(pred-y)**2
链式法则
单层感知机
例子采用10号结点的输入
这里先求出loss对w的梯度
之后可以利用公式w’=w-lr*loss对w的梯度不断更新w使得xw趋近期望的y
33感知机的梯度推导2
共有N*M次连接
Wjk就是本层j号结点到k号结点的连接
对loss(error)对wjk的求导当j=k的时候才对E对wjk的求导有影响,j!=k没有影响都是0,所以可以把求和符号去掉
这条边上的权值输出关系只和这条边上的输入结点xj^0 和输出结点Ok^1 有关(这里多看几遍)
34链式法则
链式法则
像跳板一样,逐一相乘再求解
35MLP反向传播
(多看几遍)
多层感知机